Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, Dec 2020

Course: Analog Electronics Programme: B.Tech EL ECEG 2027 Time: 03 hrs. Instructions:

SECTION A (5X6)

S. No.		Marks	CO
Q 1	Differentiate the two breakdown mechanisms in Zener diode?	5	CO1
Q 2	What is a PN junction? Explain the formation of depletion layer (potential barrier) in a PN junction?	5	CO1
Q 3	What is a Barkhausen criterion with respect to Sinusoidal Oscillator?	5	CO3
Q 4	Define following parameter for op-amp: a. Slew Rate b. CMRR c. Zero crossing Detector	5	CO3
Q5	Determine the magnitude of V_{A} . + 20 V Si Ge $ZK \Lambda$ =	5	C01
Q6	Fill in the Blanks 1.a The input Impedance of amplifier should be veryas possible. 1.b Emitter follower configuration hasvoltage gain. 1.c CE configuration output is differ byPhase shift. 1.d For switching action of BJT the biasing region of the BJT should be inregion SECTION B (10X5)	5	CO2
	SECTION B (10AS)		

UPES

Semester: III

Max. Marks: 100

	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Q8	Draw Output and Transfer characteristics of n channel JFET and explain them with the help of suitable equations?	10	CO2
Q9	Construct a Enhancement type MOSFET with the application of Gate voltage. Also draw its drain and transfer characteristics?	10	CO2
Q10	Determine the following parameters of the common emitter configuration given below? (a) I _C . (b) R _C . (c) R _B . (d) V _{CE} . $I2 V$ I_{CE} $I_{R_{S}}$ I_{C} R_{C}	10	CO4
Q11	Draw the circuit diagram of Adder using operational amplifier such that the output described by $Vo = 10V_1 - 5V_2$.	10	C03
	SECTION C (1X20)		<u> </u>
Q12	(a). Design a self-bias network using a JFET transistor with $I_{DSS} = 10$ mA and $V_{gsoff} = -8$ V to have a Q-point at $I_{DQ} = 5$ mA using a supply of 20 V. (b). Design an circuit such that if the input is $I(t)=20u(t)$, the output will be $O(t)=-60$ tu(t).	20	CO4