Name: Enrolment No:				
Course: \quad Network Analysis Semester: III Program: \quad B. Tech- Electronics and Communication Engineering Time 03 hrs. Course Code: \quad ECEG -2020 Max. Marks: $\mathbf{1 0 0}$ Instructions: (i) Answer all the questions.				
SECTION A (30 Marks) Each Question will carry 5 Marks Instruction: Write briefly (5-6 lines) S.				
S. No				CO
Q 1	What do you mean by t network systems? Explain	rt network syst appropriate app	and differentiate two-port and one-port tions.	CO 2
Q 2	Briefly define for: (i) Graph (ii) Node	(iii) Tree		$\mathrm{CO3}$
Q 3	Define Hurwitz polynomia	write its prop		CO4
Q 4	Explain the duality proper Thevenin's theorem.	Thevenin's and	rton's theorem. Also write a statement of	CO1
Q 5	Explain the condition of significance also.	iprocity and sy	metry two-port network system with the	CO2
Q 6	Write the necessary condit function and admittance fu	for transfer fu ons.	ions. Differentiate the impedance transfer	CO3
Each question will carry 10 marks Instruction: Attempt all the questions				
Q 1	Find the Norton equivalen R_{2}	uit for the netw	external to the 9Ω resistor in Figure.	CO1

Q 2

SECTION-C

Each Question carries 20 Marks.

Instruction: Write long answer.
Q 1 Attempt both the parts:
(a) Design all the possible trees and verity the number of tree using mathematical analysis.

Also, determine the incidence matrix for graph.
(b) An impedance function is given by

$$
Z(s)=\frac{(s+4)(s+6)}{(s+3)(s+5)}
$$

Design the one port R-C representation of circuit for (i) Cauer-I (ii) Cauer- II forms.

