Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, December 2020			
Course: Signals \& Systems Semester: III Program: B Tech ECE; B Tech Mechatronics Engg Time 03 hrs. Course Code: ECEG2010 Max. Marks: 100			
Instructions:			
1. Attempt all questions as per the instruction. 2. Assume any data if required and indicate the same clearly. 3. Unless otherwise indicated symbols and notations have their usual meanings. 4. Strike off all unused blank pages			
SECTION A		($6 \times 5=30 \mathrm{M}$)	
S. No.	Write only answer in the text box(for S.No:1,4 \&6 write ONLY the final answer)	Marks	CO
Q1.	Find whether the signals are periodic or not. (i) $x(t)=2 \cos (10 t+1)-\sin (4 t-1)$ (ii) $x(t)=u(t)-1 / 2$	5	CO 1
Q2.	Write the Relation between S-Plane and Z-Plane	5	CO2
Q3.	Distinguish between DTFT and FT . Distinguish between Sequence and Signal.	5	CO 3
Q4.	$X_{1}[n]=\{1,1,0,-1,0,3\} \& X_{2}[n]=\{1,1,-1\}$	5	CO 3
Q5.	Distinguish Differential and Difference equations in the perspective of Signals	5	CO 4
Q6.	Consider an LTI system with a system function $H(z)=\frac{1}{1-\left(\frac{1}{2}\right) z^{-1}}$ Find the difference equation.	5	CO 4
SECTION B $5 \times 10=50 \mathrm{M}$ Write answers, scan and upload.			
Q7.	For the signal $\mathrm{x}(\mathrm{t})$ illustrated in Fig. 1, sketch $x(t-4) ; x(2 t-4)$; and $x(2-t)$	10	CO 1

	(a) (c) (b) (d) Fig. 1		
Q8.	(i)Find the Fourier transform of $x(t)=e^{-2 t} u(t-1)$ (ii)Find the inverse Fourier Transform of $X(j \omega)=j \omega /(3+j \omega)^{2}$	5+5	CO 2
Q9.	(i)Find the Laplace transform of $x(t)= \begin{cases}e^{t} \sin (2 t) ; & t \leq 0 \\ 0 ; & t>0\end{cases}$ Indicate the location of its poles and its region of convergence. (ii)Plot the pole -zero diagram of the following transfer function $H(S)=\frac{S+2}{S^{2}+2 S+2}$	5+5	CO 2
Q10	(i)Obtain the voltage across the resistor as a function of time for $\mathrm{t}>0$. Assume that $\mathrm{i}(0)=\operatorname{Vc}(0)=0$ [Fig.2] Fig. 2 (ii) Write about initial and final value theorem and it's applications.	8+2	CO 3
Q11.	(i)Consider the signal $x[n]=\left(\frac{1}{5}\right)^{n} u[n-3]$, Evaluate the z-transform of this signal ar specify the corresponding region of convergence. (ii) Find the DTFT of $x[n]=\delta[n+2]-\delta[n-2]$	8+2	CO 4

SECTION-C \quad 1X20 $=\mathbf{2 0 M}$ Write answers, scan and upload.			
Q12	(i)Determine the system function of discrete time system described by the difference equation $y[n]-\frac{1}{3} y[n-1]+\frac{1}{5} y[n-2]=x[n]-2 x[n-1]$ (ii)Using long division method determine the Inverse Z.T of a signal if $\mathrm{x}[\mathrm{n}]$ is causal sequence on $X(Z)=\frac{1+2 Z^{-1}}{1-2 Z^{-1}+Z^{-2}}$ (Or)	10+10	CO 4
	(i) Evaluate the impulse response of an LTI system described by differential equation differential equation $\frac{d^{2} y(t)}{d t^{2}}-\frac{d y(t)}{d t}-2 y(t)=x(t)$. (ii)A causal system is represented by $H(z)=\frac{z+2}{z^{2}-3 z+4}$ determine difference equation and the frequency response of the system. (iii)Determine D.T.FT of the signal (i) $x[n]=\{1,-1,2,2\}$ (ii) $x[n]=2^{n} u[n]$	$8+8+4$	

