Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2020

Programme Name: B. Tech. Civil Eng. (Infra. Dev.)		
Course Name	: Transforms and Discrete Mathematics	
Course Code	: MATH 2039	
Nos. of page(s)	: 02	

Semester	: III
Time	: 03 hrs
Max. Mark	s : 100

	SECTION A (Attempt all questions; Each question carries 5 marks)		
S. No.		CO	
Q1.	Consider the set $S = \{1,2,3,4,6,9\}$. The maximal and minimal elements of the partial ordered set $(S,/)$ are A. maximal elements 4,6,9 and minimal element 1 B. maximal element does not exist and minimal element 1 C. maximal element 9 and minimum element 1 D. None of these.	CO3	
Q2.	The linear homogeneous recurrence relation with constant coefficients having its general solution as $a_n = c_1 3^n + (c_2 + c_3 n) 2^n$, where c_1, c_2, c_3 are arbitrary constants is given by A. $a_{n+3} - 7a_{n+2} + 16a_{n+1} - 12a_n = 0$ B. $a_{n+3} + 7a_{n+2} + 16a_{n+1} + 12a_n = 0$ C. $a_{n+3} - 11a_{n+2} + 16a_{n+1} - 12a_n = 0$ D. $a_{n+3} - 7a_{n+2} + 12a_n = 0$	CO4	
Q3.	The proposition $(p \lor q) \land (\sim p) \land (\sim q)$ isA. TautologyB. ContradictionC. ContingencyD. equivalent to p	CO2	
Q4.	Inverse Laplace transform of $\frac{s^2 - 3s + 4}{s^3}$ is A. $1 - 3t + 2t^2$ B. $1 + 3t - 2t^2$ C. $1 - 2t + 3t^2$ D. $1 + 2t - 3t^2$	CO1	
Q5.	A. $1 - 3t + 2t^2$ B. $1 + 3t - 2t^2$ C. $1 - 2t + 3t^2$ D. $1 + 2t - 3t^2$ If z-transform of $u_n, Z[u_n] = U(z)$, then $Z[a^{-n}u_n]$ isA. $U(az)$ B. $U\left(\frac{a}{z}\right)$ C. $U\left(\frac{z}{a}\right)$ D. $U(z)$	C01	
Q6.	The sequence $\{a_n\}$ having generating function $\frac{x}{1-2x}$ is given by ($n = 1,2,3,$) A. 2^{n-1} B. 2^n C. 2^{n+1} D. n^2	CO4	

	SECTION B	
	(Q7-Q10 are compulsory and Q11 has internal choice; Each question carries 10 marks)
Q7.	Consider the partial ordered set $A = \{1,2,3,4,5,6,7,8\}$ with the partial order relation $R = \{(1,3), (2,3), (3,4), (3,5), (4,6), (4,7), (5,6), (5,7), (6,8), (7,8)\}.$ a. Draw Hasse diagram of (A, R) . b. Find lower and upper bounds of the subset $B = \{3,4,5\}$ of A . c. Find greatest lower bound (glb) and least upper bound (lub) of B .	CO3
Q8.	Find the Laplace transform of $\int_0^t \frac{e^{-t} \sin t}{t} dt$.	CO1
Q9.	Let D_n denote the set of all the positive divisors of <i>n</i> . By constructing closure tables for lub (V) and glb (Λ) show that D_{15} is a lattice.	CO3
Q10.	Represent the following argument symbolically and determine whether the argument is valid. <i>"If I study, then I will pass the examination. If I do not go to cinema, then I will study. However, I failed in the examination. Therefore, I went to cinema."</i>	CO2
Q11.	Using truth table, find the principal conjunctive normal form (pcnf) of $(p \lor \sim q \land \sim r) \lor (q \land r).$ OR Establish the following equivalence using truth table $(p \lor q) \rightarrow r \equiv (p \rightarrow r) \land (q \rightarrow r).$	CO2
	SECTION C	
	(Q12a. and Q12b. both have internal choices; Each question carries 10 marks)	
Q12.	 a. Solve the following recurrence relation using generating function y_{n+2} - 2y_{n+1} + y_n = 2ⁿ, y₀ = 2, y₁ = 1. OR Given that generating function of the sequence {a_n} is G(x). Find the generating function of {a_{n+1}}, {a_{n+2}} and {a_{n+3}}. b. Solve the recurrence relation of the Fibonacci sequence of the numbers y_n = y_{n-1} + y_{n-2}, n ≥ 2 with the initial conditions y₀ = 0 and y₁ = 1. OR Solve the recurrence relation of the Lucas sequence of the numbers y_n = y_{n-1} + y_{n-2}, n ≥ 2 with the initial conditions y₀ = 1 and y₁ = 3. 	CO4

END