Name: Enrolment No:		
Progr Cours Cours Nos. 0	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2020	$\begin{aligned} & \text { II } \\ & \mathrm{hrs} \\ & 00 \end{aligned}$
SECTION A(Attempt all questions; Each question carries 5 marks)		
S. No.		CO
Q1.	Consider the set $S=\{1,2,3,4,6,9\}$. The maximal and minimal elements of the partial ordered set $(S, /)$ are A. maximal elements $4,6,9$ and minimal element 1 B. maximal element does not exist and minimal element 1 C. maximal element 9 and minimum element 1 D. None of these.	CO 3
Q2.	The linear homogeneous recurrence relation with constant coefficients having its general solution as $a_{n}=c_{1} 3^{n}+\left(c_{2}+c_{3} n\right) 2^{n}$, where c_{1}, c_{2}, c_{3} are arbitrary constants is given by A. $a_{n+3}-7 a_{n+2}+16 a_{n+1}-12 a_{n}=0$ B. $a_{n+3}+7 a_{n+2}+16 a_{n+1}+12 a_{n}=0$ C. $a_{n+3}-11 a_{n+2}+16 a_{n+1}-12 a_{n}=0$ D. $a_{n+3}-7 a_{n+2}+12 a_{n}=0$	CO4
Q3.	The proposition $(p \vee q) \wedge(\sim p) \wedge(\sim q)$ is A. Tautology B. Contradiction C. Contingency D. equivalent to p	CO2
Q4.	Inverse Laplace transform of $\frac{s^{2}-3 s+4}{s^{3}}$ is A. $1-3 t+2 t^{2}$ B. $1+3 t-2 t^{2}$ C. $1-2 t+3 t^{2}$ D. $1+2 t-3 t^{2}$	CO1
Q5.	If z-transform of $u_{n}, Z\left[u_{n}\right]=U(z)$, then $Z\left[a^{-n} u_{n}\right]$ is A. $U(a z)$ B. $U\left(\frac{a}{z}\right)$ C. $U\left(\frac{z}{a}\right)$ D. $U(z)$	CO1
Q6.	The sequence $\left\{a_{n}\right\}$ having generating function $\frac{x}{1-2 x}$ is given by ($n=1,2,3, \ldots$) A. 2^{n-1} B. 2^{n} C. 2^{n+1} D. n^{2}	$\mathrm{CO4}$

SECTION B

(Q7-Q10 are compulsory and Q11 has internal choice; Each question carries $\mathbf{1 0}$ marks)

Q7.	Consider the partial ordered set $A=\{1,2,3,4,5,6,7,8\}$ with the partial order relation $R=$ $\{(1,3),(2,3),(3,4),(3,5),(4,6),(4,7),(5,6),(5,7),(6,8),(7,8)\}$. a. Draw Hasse diagram of (A, R). b. Find lower and upper bounds of the subset $B=\{3,4,5\}$ of A. c. Find greatest lower bound (glb) and least upper bound (lub) of B.	$\mathrm{CO3}$
Q8.	Find the Laplace transform of $\int_{0}^{t} \frac{e^{-t} \sin t}{t} d t$.	CO1
Q9.	Let D_{n} denote the set of all the positive divisors of n. By constructing closure tables for lub (V) and $\mathrm{glb}(\Lambda)$ show that D_{15} is a lattice.	$\mathrm{CO3}$
Q10.	Represent the following argument symbolically and determine whether the argument is valid. "If I study, then I will pass the examination. If I do not go to cinema, then I will study. However, I failed in the examination. Therefore, I went to cinema."	CO 2
Q11.	Using truth table, find the principal conjunctive normal form (penf) of $(p \vee \sim q \wedge \sim r) \vee(q \wedge r)$ OR Establish the following equivalence using truth table $(p \vee q) \rightarrow r \equiv(p \rightarrow r) \wedge(q \rightarrow r)$	CO 2
SECTION C(Q12a. and Q12b. both have internal choices; Each question carries 10 marks)		

Q12. a. Solve the following recurrence relation using generating function

$$
y_{n+2}-2 y_{n+1}+y_{n}=2^{n}, y_{0}=2, y_{1}=1
$$

OR
Given that generating function of the sequence $\left\{a_{n}\right\}$ is $G(x)$. Find the generating function of $\left\{a_{n+1}\right\},\left\{a_{n+2}\right\}$ and $\left\{a_{n+3}\right\}$.
b. Solve the recurrence relation of the Fibonacci sequence of the numbers $y_{n}=$ $y_{n-1}+y_{n-2}, n \geq 2$ with the initial conditions $y_{0}=0$ and $y_{1}=1$.

OR

Solve the recurrence relation of the Lucas sequence of the numbers $y_{n}=$ $y_{n-1}+y_{n-2}, n \geq 2$ with the initial conditions $y_{0}=1$ and $y_{1}=3$.

