Name:

Enrolment No:

UNIVERSITY WITH A PURPOSE

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, Dec 2020

Course: Thermodynamics -I Program: B. Tech (CE+RP) Course Code: CHCE 2012

Semester: III Time: 3 hrs Max. Marks: 100

Instructions: (1) Answer ALL questions, Q12 has an internal choice

(2) Assume appropriate value of missing data, if any.

(3) The thermodynamic terms have their usual meanings as described in the class

SECTION A (50 M)					
S. No.		Marks	CO		
Q1	Explain the Macroscopic and Microscopic aspects of thermodynamics	5	CO1		
Q2	Explain the significance of (i) Helmholtz free energy (ii) Gibbs free energy (iii) Joule Thomson Coefficient	5	CO4		
Q3	Explain the terms 'state function' and 'path function'.	5	CO1		
Q4	Show that entropy is a property of a system	5	CO3		
Q5	Discuss the three-parameter theorem of the corresponding state	5	CO2		
Q6	Explain the working of a Carnot refrigerator and discuss its coefficient of performance	5	CO5		
	SECTION B (50 M)				
Q 7	A gas obeying the Clausius equation of state is isothermally compressed from 5 MPa to 15 MPa in a closed system at 400 K. The Clausius equation of state is $P = \frac{RT}{v - b(T)}$; where P is the pressure, T is the temperature, v is the molar volume and R is the				
	, where F is the pressure, T is the temperature, V is the motal volume and K is the universal gas constant. The parameter b in the above equation varies with temperature as $b(T) = b_o + b_1 T$ with $b_o = 4 \times 10^{-5}$ m ³ mol ⁻¹ and $b_1 = 1.35 \times 10^{-7}$ m ³ mol ⁻¹ K ⁻¹ . The effect of pressure on the molar enthalpy (h) at a constant temperature is given by	10	CO4		

SECTION A (30 M)

			r 1
	$\left(\frac{\partial h}{\partial P}\right)_T = v - T \left(\frac{\partial V}{\partial T}\right)_P$. Let h_i and h_f denote the initial and final molar enthalpies,		
	respectively. Find the change in the molar enthalpy $h_f - h_i$ (in J mol ⁻¹) for this process.		
Q8	Explain the working of a simple vapor power plant, Carnot cycle and Rankine cycle		
	with the help of T-S diagram. Why does the efficiency of a Rankine cycle increase with decreasing condenser pressure ?	10	CO5
Q9	A gas in a piston-cylinder assembly undergoes an expansion process for which the	10	
	relationship between pressure and volume is given by $PV^n = constant$. The initial		
	pressure is 3 bar, the initial volume is $0.1m^3$ and the final volume is $0.2m^3$. Determine		CO1
	the work for the process, in kJ, if (a) $n = 1.5$ (b) $n = 1.0$ and (c) $n = 0$. Derive the		
	expressions for work done in all three cases.		
Q10	An insulated tank of volume 2 m ³ is divided into two equal compartments by a thin		
	and rigid partition. One compartment contains an ideal gas at 400 K and 300 kPa,		
	while the other is completely evacuated. Now, the partition is suddenly removed and	10	CO3
	the gases are allowed to mix. The equilibrium is established by equalizing the pressure		
	and temperature. Estimate the change in entropy of the gas		
Q11	If CO ₂ gas follows an EOS, $\left(P + \frac{365}{V^2}\right)(V - 0.043) = RT$. Find the change in		
	internal energy per kg-mole pf the gas undergoes isothermal expansion from 10,132		
	kPa to 101.32 kPa at 100 $^{\rm o}{\rm C}$, the corresponding molar volume of the gas are 0.215	10	CO2
	m^3 / kmol and 30.53 m^3 /kmol respectively.		

	SECTION C (20 M)						
Q12	It is found that at a particular hill station water boils at 95 °C. It is known that at mean sea level where pressure is 1 bar, water boils at 373.15 K, with latent heat of vaporization 2256.94 kJ/kg. Assuming the atmosphere is isothermal at 25 °C, estimate the altitude of hill station above the mean sea level. Take molecular weight of air = 28.97.						
	OR Show that						
	Show that $\left(\frac{\partial T}{\partial V}\right)_{S} = \frac{-T\beta}{\kappa C_{v}}$	CO4	20				
	Suppose that the liquid water at 25 °C is isentropically compressed such that its volume decreases by 10 %. What would be the rise in temperature of water. For liquid water						
	$\beta = 2 \times 10^{-4} K^{-1}, v = 0.0010029 m^3 / kg$ $\kappa = 4.85 \times 10^{-4} MPa^{-1} and C_v = 4.2kJ / kg - K$						