Name: Enrolment No:			
Course Progra Course Instruc	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, Dec 2020 Thermodynamics -I		
SECTION A (30 M)			
S. No.		Marks	CO
Q1	Explain the Macroscopic and Microscopic aspects of thermodynamics	5	CO1
Q2	Explain the significance of (i) Helmholtz free energy (ii) Gibbs free energy (iii) Joule Thomson Coefficient	5	CO4
Q3	Explain the terms 'state function' and 'path function'.	5	CO1
Q4	Show that entropy is a property of a system	5	CO3
Q5	Discuss the three-parameter theorem of the corresponding state	5	CO2
Q6	Explain the working of a Carnot refrigerator and discuss its coefficient of performance	5	CO5
	SECTION B (50 M)		
Q 7	A gas obeying the Clausius equation of state is isothermally compressed from 5 MPa to 15 MPa in a closed system at 400 K . The Clausius equation of state is $P=\frac{R T}{v-b(T)}$; where P is the pressure, T is the temperature, v is the molar volume and R is the universal gas constant. The parameter b in the above equation varies with temperature as $b(T)=b_{o}+b_{1} T$ with $b_{o}=4 \times 10^{-5} \mathrm{~m}^{3} \mathrm{~mol}^{-1}$ and $b_{1}=1.35 \times 10^{-7} \mathrm{~m}^{3} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$. The effect of pressure on the molar enthalpy (h) at a constant temperature is given by	10	CO4

	$\left(\frac{\partial h}{\partial P}\right)_{T}=v-T\left(\frac{\partial V}{\partial T}\right)_{P}$. Let h_{i} and h_{f} denote the initial and final molar enthalpies, respectively. Find the change in the molar enthalpy $h_{f}-h_{i}\left(\right.$ in $\left.\mathrm{J} \mathrm{mol}^{-1}\right)$ for this process.		
Q8	Explain the working of a simple vapor power plant, Carnot cycle and Rankine cycle with the help of T-S diagram. Why does the efficiency of a Rankine cycle increase with decreasing condenser pressure ?	10	CO5
Q9	A gas in a piston-cylinder assembly undergoes an expansion process for which the relationship between pressure and volume is given by $\mathrm{PV}^{\mathrm{n}}=$ constant. The initial pressure is 3 bar , the initial volume is $0.1 \mathrm{~m}^{3}$ and the final volume is $0.2 \mathrm{~m}^{3}$. Determine the work for the process, in kJ , if (a) $\mathrm{n}=1.5$ (b) $\mathrm{n}=1.0$ and (c) $\mathrm{n}=0$. Derive the expressions for work done in all three cases.	10	CO1
Q10	An insulated tank of volume $2 \mathrm{~m}^{3}$ is divided into two equal compartments by a thin and rigid partition. One compartment contains an ideal gas at 400 K and 300 kPa , while the other is completely evacuated. Now, the partition is suddenly removed and the gases are allowed to mix. The equilibrium is established by equalizing the pressure and temperature. Estimate the change in entropy of the gas	10	CO 3
Q11	If CO_{2} gas follows an EOS, $\left(P+\frac{365}{V^{2}}\right)(V-0.043)=R T$. Find the change in internal energy per kg-mole pf the gas undergoes isothermal expansion from 10,132 kPa to 101.32 kPa at $100^{\circ} \mathrm{C}$, the corresponding molar volume of the gas are 0.215 $\mathrm{m}^{3} / \mathrm{kmol}$ and $30.53 \mathrm{~m}^{3} / \mathrm{kmol}$ respectively.	10	CO 2

SECTION C (20 M)

Q12	It is found that at a particular hill station water boils at $95^{\circ} \mathrm{C}$. It is known that at mean sea level where pressure is 1 bar, water boils at 373.15 K , with latent heat of vaporization $2256.94 \mathrm{~kJ} / \mathrm{kg}$. Assuming the atmosphere is isothermal at $25^{\circ} \mathrm{C}$, estimate the altitude of hill station above the mean sea level. Take molecular weight of air $=$ 28.97. OR Show that $\left(\frac{\partial T}{\partial V}\right)_{S}=\frac{-T \beta}{\kappa C_{v}}$ Suppose that the liquid water at $25^{\circ} \mathrm{C}$ is isentropically compressed such that its volume decreases by 10%. What would be the rise in temperature of water. For liquid water $\begin{aligned} & \beta=2 \times 10^{-4} \mathrm{~K}^{-1}, v=0.0010029 \mathrm{~m}^{3} / \mathrm{kg} \\ & \kappa=4.85 \times 10^{-4} M P a^{-1} \text { and } \quad C_{v}=4.2 \mathrm{~kJ} / \mathrm{kg}-K \end{aligned}$	CO4	20

