Name:	ame: UPES			
Enrolment No:				
	UNIVERSITY OF PETROLEUM AND ENERGY STU	IDIES		
	End Semester Examination, December 2020			
Programme Name: B.Tech – ADE Semester		nester : II	I	
Course Name : Applied Fluid Mechanics Time		e : 03	: 03 hrs	
Course Code : MECH2015 Max. M)0	
Nos. of				
Instruct	tions: Assume suitable data if required.			
1 Fach	SECTION A Question will carry 5 Marks			
	uction: Complete the statement			
S. No.	Question	Marks		
Q 1	Define the following terms:			
	a) Specific volume b) Specific gravity c) Vacuum pressure d) Incompressible flui	d 5	CO1	
Q 2	Discuss the following terms:			
	a) Newtonian fluid b) Dynamics viscosity c) Compressibility	5	CO1	
Q 3	Define a steady flow field in the Eulerian reference frame. In such a steady flow, i	s it	002	
	possible for a fluid particle to experience a nonzero acceleration?	5	CO2	
Q 4	Differentiate between free and forced vortex flow along with suitable examples.	5	CO3	
Q 5	Define Stream line, streak line and path line.	5	CO2	
Q 6	Discuss the kinetic energy and momentum correction factors.	5	CO2	
 I	SECTION B			
1. Each	question will carry 10 marks			
2. Instru	uction: Write short / brief notes			
Q 7	An oil tank has an opening of 2 m square with diagonal horizontal in one of its verti			
	wall as shown in figure below. Determine the total force and torque required to clo			
	the opening by a hinged gate exactly if the oil (sp. gravity 0.90) level is 5 m above centerline of the gate.	ine		
		10	CO1	

0.0			1
Q 8	A kite of dimensions 0.8 m x 0.8 m and weighing 6 N is maintained in air at an angle		
	of 100 to the horizontal. The string attached to the kite makes an angle of 450 to the		
	horizontal and at this position the drag and lift coefficients are estimated to be 0.6 and		
	0.8 respectively. Determine :	10	CO5
	i. Wind speed		
	ii. Tension in the string		
	Tale density of air as 1.2 kg/m3.		
Q 9	A horizontal ventuimeter with inlet diameter 200 mm and throat diameter 100 mm is	10	
	employed to measure the flow of water. The reading of the differential manometer		CO4
	connected to the inlet is 180 mm of mercury. If the coefficient of discharge is 0.98,		004
	determine the rate of flow.		
Q 10	The diagram shows a tank draining into another lower tank through a pipe. Note the velocity and pressure is both zero on the surface on a large tank. Calculate the flow rate using the data given on the diagram. $ \begin{array}{c} $	10	CO4
Q11	Determine the displacement thickness, the momentum thickness and energy thickness	10	CO5
	for the velocity distribution in the boundary layer given by $u/U = 2(y/\delta) - (y/\delta)^2$	-	
1 Fach	SECTION-C a Question carries 20 Marks.		
	ruction: Write long answer.		
Q 12	Derive Euler's equation of motion along a streamline and integrate it to obtain		
Q 12	Bernoulli's equation. State all assumptions made.		
	Demount 5 equation. State an assumptions made.		
	(OR)		
	A jet of water of diameter 7.5 cm strikes a curved plate at its center with a velocity of 20 m/s. The curved plate is moving with a velocity of 8m/s in the direction of the jet. The jet is deflected through an angle of 165°. Assuming the plate smooth determine: (a) Force exerted on the plate in the direction of jet, (b) Work done by the jet on the plate per second.	20	CO3