Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2020

Course: Engineering Thermodynamics Program: B. Tech. (APE-Gas) Course Code: MECH 2001 Semester : III Time : 3 hr Max. Marks : 100

Instructions: Assume any missing data. The notations used here have the usual meanings. Draw the diagrams, wherever necessary.

SECTION - A $(6 \times 5 = 30 \text{ marks})$ (Answer all the questions)				
S. No.		Marks	CO	
1.	 A Carnot engine operates between temperature levels of 600 K and 300 K. It derives a Carnot refrigerator, which provides cooling at 250 K and discards heat at 300 K. Determine the numerical value for the ratio of heat extracted by refrigerator to the heat delivered to the engine. (a) 1 (b) 1.5 (c) 2 (d) 2.5 	5	CO2	
2.	50 kmol/h of air is compressed from 1.2 bar to 6 bar in a steady flow compressor. Delivered mechanical power is 98.8 kW. Temperatures and velocities at the inlet point are 300 K and 10 m/s & exit point are & 520 K and 3.5 m/s. Estimate the rate of heat transfer from the compressor. Assume for air that $C_p = 3.5R$ and enthalpy is independent of pressure. (a) -5.9 kW (b) -10.5 kW (c) -15.9 kW (d) -18.9 kW	5	CO2	
3.	At 286 K and 139.3 bar, the compressibility factor of methane is found to be 0.8. At approximately what temperature and pressure, nitrogen will give the compressibility	5	CO3	

	immersed in the water and the system is allowed to come to equilibrium. What is the	20	
1.	at 25 $^{\circ}$ C is contained in a perfectly insulated steel tank weighing 5 kg. The casting is	10	CO1
<u>No.</u> 1.	A steel casting weighing 2 kg has an initial temperature of 500 °C, 40 kg of water initially		
S.		Marks	СО
	SECTION - B (5 × 10 = 50 marks) (Answer all the questions)		
	(d) 620 kJ/min		
	(c) 420 kJ/min		
	(b) 210 kJ/min	5	CO5
	(a) 21 kJ/min		
6.	One ton of refrigeration is equal to		
	(d) 40% A		
	(c) 57% A		
	(b) 67% A		
	(a) 80% A	5	CO4
	for B. The Vapor composition is		
	vapor pressures of pure liquids at equilibrium temperature are 80 kPa for A and 40 kPa		
5.	An ideal solution containing 40 % A and 60% B is in equilibrium with its vapor. The		
	(d) 4		
	(c) 3		
	(b) 2	5	CO3
	(a) 1	_	
	K and 202 kPa		
4.	Assuming that CO_2 obeys the ideal gas law, calculate the density of CO_2 in kg/m ³ at 540		
	(d) 84 K and 11.2 bar		
	(c) 286 K and 33.5 bar		
	 (a) 189 K and 101 bar (b) 229 K and 111 bar 		
	& 126.2 K and 33.5 bar for nitrogen.		
	factor of 0.8. The critical temperature and pressure are 190.7 K and 45.8 bar for methane		

	final temperature? Ignore any effect of expansion or contraction, and assume constant		
	specific heats of 4.18 kJ/kg-K for water and 0.50 kJ/kg-K for steel.		
2.	For an ideal gas, prove that		
	$\frac{\Delta S}{R} = \int_{T_0}^T \frac{C_v^{ig}}{R} \frac{dT}{T} + \ln \frac{V}{V_0}$	10	CO2
	where T_0 and V_0 are initial temperature and molar volume, respectively.		
3.	One cubic meter of an ideal gas at 600 K and 1000 kPa expands to five times its initial		
	volume by a mechanically reversible, adiabatic process. Calculate the final temperature,	10	CO3
	pressure and work done by the gas for both cases. $C_p = 21$ J/mol-K.		
4.	The excess Gibbs energy of a binary mixture at T and P is given by		
	$\frac{G^E}{RT} = (-2.6 x_1 - 1.8 x_2) x_1 x_2$	10	CO3
	Find expressions for $\ln \gamma_1$ and $\ln \gamma_2$.		
5.	A mixture of 25% n-pentane, 45% n-hexane and rest n-heptane is brought to a condition		
	of 93 ^{0}C and 2 atm. All percentages are mole percentages. The K _i values of n-pentane,		
	n-hexane and n-heptane are 2.150, 0.960 and 0.430, respectively.	10	CO4
	(a) What molar fraction of the system is liquid?		
	(b) What are the phase composition of liquid and vapor?		
	SECTION – C (1 × 20 = 20 marks) (Answer all the questions)		
1.	A refrigerator with tetrafluoroethane as refrigerant operates with an evaporation		
	temperature of -26 °C and a condensation temperature of 27 °C. Saturated liquid		
	refrigerant from the condenser flows through an expansion valve into the evaporator,		
	from which it emerges as saturated vapor.		
	(a) For a cooling rate of 5.275 kW, what is the circulation rate of the refrigerant?	20	CO5
	(b) By how much would the circulation rate be reduced if the throttle valve were replaced		
	by a turbine in which the refrigerant expands isentropically?		
	(c) Determine the coefficient of performnce for isentropic compression of the vapor for		
	part (a) and (b).		

Temperature (⁰ C)	Saturation pressure MPa	Liquid density kg/m ³	Specific volume of vapor m ³ /kg	Enthalpy (kJ/kg)		Entro (kJ/kį	
	Р	$ ho^1$	V^{v}	H^{l}	H ^v	S^1	$\mathbf{S}^{\mathbf{v}}$
-26	0.10133	1374.3	0.19016	166.07	382.90	0.8701	1.7476
24	0.64566	1210.1	0.03189	233.05	411.93	1.1149	1.7169
28	0.72676	1194.9	0.02829	238.77	413.95	1.1338	1.7155

 Table: 1 Thermodynamic properties of Saturated Tetrafluoroethane

