Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2020 Course: Engineering Thermodynamics Program: B. Tech. (APE-Gas) Course Code: MECH 2001 Instructions: Assume any missing data. The notations used here have the usual meanings. Draw the diagrams, wherever necessary.			
SECTION - A (6 $\times 5$ = 30 marks) (Answer all the questions)			
S. No.		Marks	CO
1.	A Carnot engine operates between temperature levels of 600 K and 300 K . It derives a Carnot refrigerator, which provides cooling at 250 K and discards heat at 300 K . Determine the numerical value for the ratio of heat extracted by refrigerator to the heat delivered to the engine. (a) 1 (b) 1.5 (c) 2 (d) 2.5	5	CO2
2.	$50 \mathrm{kmol} / \mathrm{h}$ of air is compressed from 1.2 bar to 6 bar in a steady flow compressor. Delivered mechanical power is 98.8 kW . Temperatures and velocities at the inlet point are 300 K and $10 \mathrm{~m} / \mathrm{s}$ \& exit point are \& 520 K and $3.5 \mathrm{~m} / \mathrm{s}$. Estimate the rate of heat transfer from the compressor. Assume for air that $\mathrm{C}_{\mathrm{p}}=3.5 \mathrm{R}$ and enthalpy is independent of pressure. (a) -5.9 kW (b) -10.5 kW (c) -15.9 kW (d) -18.9 kW	5	CO2
3.	At 286 K and 139.3 bar, the compressibility factor of methane is found to be 0.8 . At approximately what temperature and pressure, nitrogen will give the compressibility	5	$\mathrm{CO3}$

	factor of 0.8 . The critical temperature and pressure are 190.7 K and 45.8 bar for methane \& 126.2 K and 33.5 bar for nitrogen. (a) 189 K and 101 bar (b) 229 K and 111 bar (c) 286 K and 33.5 bar (d) 84 K and 11.2 bar		
4.	Assuming that CO_{2} obeys the ideal gas law, calculate the density of CO_{2} in $\mathrm{kg} / \mathrm{m}^{3}$ at 540 K and 202 kPa (a) 1 (b) 2 (c) 3 (d) 4	5	$\mathrm{CO3}$
5.	An ideal solution containing $40 \% \mathrm{~A}$ and $60 \% \mathrm{~B}$ is in equilibrium with its vapor. The vapor pressures of pure liquids at equilibrium temperature are 80 kPa for A and 40 kPa for B. The Vapor composition is (a) $80 \% \mathrm{~A}$ (b) $67 \% \mathrm{~A}$ (c) $57 \% \mathrm{~A}$ (d) $40 \% \mathrm{~A}$	5	$\mathrm{CO4}$
6.	One ton of refrigeration is equal to (a) $21 \mathrm{~kJ} / \mathrm{min}$ (b) $210 \mathrm{~kJ} / \mathrm{min}$ (c) $420 \mathrm{~kJ} / \mathrm{min}$ (d) $620 \mathrm{~kJ} / \mathrm{min}$	5	$\mathrm{CO5}$
	SECTION - B ($\mathbf{5} \times \mathbf{1 0}=\mathbf{5 0}$ marks) (Answer all the questions)		
S. No.		Marks	CO
1.	A steel casting weighing 2 kg has an initial temperature of $500^{\circ} \mathrm{C}, 40 \mathrm{~kg}$ of water initially at $25^{\circ} \mathrm{C}$ is contained in a perfectly insulated steel tank weighing 5 kg . The casting is immersed in the water and the system is allowed to come to equilibrium. What is the	10	CO1

	final temperature? Ignore any effect of expansion or contraction, and assume constant specific heats of $4.18 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ for water and $0.50 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ for steel.		
2.	For an ideal gas, prove that $\frac{\Delta S}{R}=\int_{T_{0}}^{T} \frac{C_{v}^{i g}}{R} \frac{d T}{T}+\ln \frac{V}{V_{0}}$ where T_{0} and V_{0} are initial temperature and molar volume, respectively.	10	$\mathrm{CO2}$
3.	One cubic meter of an ideal gas at 600 K and 1000 kPa expands to five times its initial volume by a mechanically reversible, adiabatic process. Calculate the final temperature, pressure and work done by the gas for both cases. $\mathrm{C}_{\mathrm{p}}=21 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$.	10	$\mathrm{CO3}$
4.	The excess Gibbs energy of a binary mixture at T and P is given by $\frac{G^{E}}{R T}=\left(-2.6 x_{1}-1.8 x_{2}\right) x_{1} x_{2}$ Find expressions for $\ln \gamma_{1}$ and $\ln \gamma_{2}$.	10	$\mathrm{CO3}$
5.	A mixture of 25% n-pentane, 45% n-hexane and rest n -heptane is brought to a condition of $93{ }^{\circ} \mathrm{C}$ and 2 atm . All percentages are mole percentages. The K_{i} values of n -pentane, n -hexane and n-heptane are $2.150,0.960$ and 0.430 , respectively. (a) What molar fraction of the system is liquid? (b) What are the phase composition of liquid and vapor?	10	$\mathrm{CO4}$
SECTION - C ($\mathbf{1} \times \mathbf{2 0}=\mathbf{2 0}$ marks $)$ (Answer all the questions)			
1.	A refrigerator with tetrafluoroethane as refrigerant operates with an evaporation temperature of $-26^{\circ} \mathrm{C}$ and a condensation temperature of $27^{\circ} \mathrm{C}$. Saturated liquid refrigerant from the condenser flows through an expansion valve into the evaporator, from which it emerges as saturated vapor. (a) For a cooling rate of 5.275 kW , what is the circulation rate of the refrigerant? (b) By how much would the circulation rate be reduced if the throttle valve were replaced by a turbine in which the refrigerant expands isentropically? (c) Determine the coefficient of performnce for isentropic compression of the vapor for part (a) and (b).	20	$\mathrm{CO5}$

Table: 1 Thermodynamic properties of Saturated Tetrafluoroethane

Temperature $\left({ }^{0} \mathrm{C}\right)$	Saturation pressure MPa	Liquid density $\mathrm{kg} / \mathrm{m}^{3}$	Specific volume of vapor $\mathrm{m}^{3} / \mathrm{kg}$	Enthalpy $(\mathrm{kJ} / \mathrm{kg})$		Entropy $(\mathrm{kJ} / \mathrm{kg}-\mathrm{K})$	
	P	ρ^{1}	$\mathrm{~V}^{\mathrm{V}}$	H^{l}	H^{V}	S^{1}	$\mathrm{~S}^{\mathrm{V}}$
	0.10133	1374.3	0.19016	166.07	382.90	0.8701	1.7476
24	0.64566	1210.1	0.03189	233.05	411.93	1.1149	1.7169
28	0.72676	1194.9	0.02829	238.77	413.95	1.1338	1.7155

