Name: Enrolmo	ent No: UNIVERSITY WITH A PURP			
	UNIVERSITY OF PETROLEUM AND ENERGY STUD End Semester Examination, December 2020	IES		
Course Course Nos. of	rogram Name:B. Tech. (APE-Gas/ CERP)Semesterourse Name:Material and Energy Balance ComputationsTimeourse Code:CHCE 2013Max. Marlos. of page(s):03istructions:Assume any missing data. Draw the diagrams, wherever necessary.		: III : 3 hours ks: 100	
	SECTION A (6X10=60 marks)			
S. No.			Marks	CO
1	A mixture of gas has the following composition by mass O_2 - 16%, CO-4%, Co-4\%, Co-4	CO ₂ - 8%	10	CO1
2	 Aluminum sulfate can be made by reacting crushed bauxite ore with sulfuric according to the following equation Al₂O₃ + 3 H₂SO₄ → Al₂(SO₄)₃ + 3H₂O The bauxite ore contains 55.4% by weight aluminum oxide, the reminder beir impurities. The sulfuric acid solution contains 77.7% H₂SO₄, the rest being we produce crude aluminum sulfate containing 1798 lb of pure aluminum sulfate lb of bauxite ore and 2510 lb of sulfuric acid solution are used. a) Identify the excess reactant b) What percent of excess reactant was consumed c) What was the degree of completion of the reactant? 	ng vater. To e, 1080	10	CO2
3	The vapor pressure of Benzene is measured at two temperatures, with the foll results $T_{1} = 7.6 ^{O}C \qquad p_{1}* = 40 \text{ mm Hg} \\ T_{2} = 15.4 ^{O}C \qquad p_{2}* = 60 \text{ mm Hg} \\ Determine the latent heat of vaporization and the parameter B in Clausius-Clapeyron equation and then estimate p^{*} at 42.2 in ^{O}C using this equation.lnp^{*} = -\frac{\Delta Hv}{RT} + B \\ p^{*} = \text{saturation vapor pressure } \Delta H_{v} = \text{latent heat of vaporization} \\ B = \text{constant} \qquad T = \text{absolute Temperature} \end{cases}$	lowing	10	CO3

	(Hint: Evaluate $\Delta H_v / R$ using Clausius- Clapeyron equation first and then solve for B)		
4	Moist air contains 0.0109 kg water vapor per cubic feet of the mixture at 300 K and 101.325 kPa. Calculate the followinga) Partial pressure of water vaporb) The relative saturationc) Absolute humidity of the aird) The percentage saturationThe vapor pressure of water is approximated by the following Antoine equation $lnp^* = 16.26205 - \frac{3799.887}{T - 46.854}$ where T in K and p in kPa.	10	CO4
5	A simplified process for the production of SO ₃ is to be used in the manufacture of sulfuric acid is as follows:	10	CO5
6	The heat capacity of CO2 gas is given as $C_p = 6.393 + 10.1 \times 10^{-3} \text{ T} - 3.405 \times 10^{-6} \text{ T}^2$ where C_p is in cal/g mol K and T in K. Estimatea) Mean heat capacity by arithmetic averageb) Mean heat capacity by integral average.When the gas is heated from 500 to 1000 K.SECTION B	10	CO6
	(2 X 20=40 marks)		
7	Immobilized glucose isomerase is used as a catalyst in producing fructose from glucose in a fixed bed reactor (water is the solvent) for the system shown in figure. What percent conversion of glucose results on one pass through the reactor when the exit stream/ recycle ratio in mole is 8.33? The reaction is $C_6H_{12}O_6(Glucose) + C_6H_{12}O_6(fructose)$	20	CO5

	Feed 40% glucose in v	1	^{I% fructose} → Fixed be	ed reactor	> Product		
			Recycle				
8	The conversion in an environm cooled or dilute waste can be bu 1.5% CO, 7.3% What is the enti- the stack if the the top of the st gases, you can components. The heat cap ⁰ F and T in (HINT: Use Component	20	CO6				
	N ₂	6.895	0.7624 × 10 ⁻³	0.7009×10^{-7}			
	O ₂	7.104	0.7851 × 10 ⁻³	0.5528 × 10 ⁻⁷			
	CO ₂	8.448	5.757×10^{-3}	21.59×10^{-7}	3.059×10^{-10}		
	СО	6.865	0.8024 × 10 ⁻³	0.7367×10^{-7}			