UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2020

Programme Name: B. Tech (EPE, ECE, Mech, ADE, Mechatronics)
Course Name : Statistical and Numerical Methods
Course Code : MATH-2037
Nos. of page(s) : 2

Semester : III
Time : 3 Hours
Max. Marks : 100

Section-A

1. Each question will carry 5 Marks. 2. Select correct answer in each question. 3. All Questions of this section are compulsory.

S. No.		CO
Q1	If the first three central moments are $0,15,-31$,the coefficient of skewness is (a) -2.066 (b) -0.53 (c) -0.5 (d)-2.5	CO1
Q2	Wireless sets are manufactured with 25 solders joints each, on the average 1 joint in 500 is defective. How many sets can be expected to be free from defective joints in a consignment of 10000 sets? (a) 7000 (b) 8230 (c) 9512 (d) 6425	CO1
Q3	In 324 throws of a six faced dice, odd points appeared 180 times. The value of z-statistic for checking the fairness of dice is: (a) 1.5 (b) -1.5 (c) -2 (d) 2	CO 2
Q4	A positive root of the equation $x \log _{10} x=4.772393$ lies between (a) 10 and 11 (b) 2 and 3 (c) 4 and 5 (d) 6 and 7	CO 3
Q5	Value of the integral $\int_{0}^{1} \frac{x^{2}}{1+x^{3}} d x$ using Simpson's $1 / 3^{\text {rd }}$ formula taking $h=0.25$ correct to 5 decimal places is (a) 0.23000 (b) 0.23108 (c) 0.23333 (d) 0.24444	CO 3
Q6	Solution of $\frac{d y}{d x}=x^{2} y-1, \mathrm{y}(0)=1$ by Taylor's series method at $y=0.1$ is (a) 1.1 (b) 2.5 (c) 0.55 (d) 0.9	CO 4

Section-B

1. Each question will carry 10 Marks. All Questions of this section are compulsory.

S. No.							CO
Q7	A large number of measurement is normally distributed with a mean $65.5^{\prime \prime}$ and S.D. of $6.2^{\prime \prime}$. Find the percentage of measurements that fall between $54.8^{\prime \prime}$ and $68.8^{\prime \prime}$.(Area under standard normal curve between $z=0$ and $z=1.73$ is 0.4582 and between $z=0$ and $z=0.53$ is 0.2019)						CO1
Q8	In a sample of 1000 , the mean is 17.5 and the standard deviation is 2.5 . In another sample of 800 , the mean is 18 and the standard deviation is 2.7 . Assuming that the samples are independent, test for significance of difference between their standard deviation and whether two samples could have come from a population.						CO2
Q9	From the following table of half-yearly premium for policies maturing at different ages, estimate the premium for policy maturing at the age of 63:						CO3
	Age:	45	50	55	60	65	
	Premium (In Rs.)	114.84	96.16	83.32	74.48	68.48	
Q10	Calculate the value of the integral $\int_{4}^{5.2} \log _{e} x d x$ from Trapezoidal rule by taking $h=0.2$.						$\mathrm{CO3}$
Q11	Using Runge-Kutta method of fourth order, solve for $y(0.1)$ taking $h=0.1$ given that $\frac{d y}{d x}=x y+y^{2}, y(0)=1$.						CO4

Section-C

1. The question will carry 20 Marks. 2. Choose one question from two options.

S. No.		CO
Q12	Solve the Laplace equation $u_{x x}+u_{y y}=0$ at the interior points of the figure below by Gauss Seidal method upto 3 iterations : Solve the equation $\frac{\partial u}{\partial t}=\frac{\partial u^{2}}{\partial x^{2}}$ with the conditions $u(0, t)=0, u(x, 0)=x(1-x)$ and $u(1, t)=0$ using Schmidt method. Assuming $h=0.25$, tabulate u for two time levels by choosing appropriate value of k.	CO4

