Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2020

Course: Mathematical Physics II Program: B.Sc. Physics (H) Course Code: PHYS 2001 Semester: III Time 180 Minutes Max. Marks: 100

Instructions: 1. The question paper has three sections: Section A, B and C. All sections are compulsory. 2. Section C has internal choice.

SECTION A				
S. No.		Marks	COs	
Q 1	Identify Dirichlet's conditions: any function $f(x)$ can be developed as a Fourier series provided that (a)	5	CO1	
Q 2	Approximate the function $f(x) = x \sin x$ in $(-\pi, \pi)$ to estimate the value of b_n using Fourier series	5	C01	
Q 3	Compute the regular singular points of the differential equation $x^2(x-2)^2 y'' + 2(x-2)y' + (x+3)y = 0$ are	5	CO2	
Q 4	Evaluate $\int_0^1 x^4 (1 - \sqrt{x})^5 dx$ using Beta function and fill in the blank	5	CO3	
Q 5	Choose the correct option as using Gamma function $\int_0^\infty \frac{x^a}{a^x} dx$ can be evaluated in the form of $\frac{1}{(\log a)^{a+1}}(a!)$. [Note: "!" indicates factorial sign].	5	CO3	
Q 6	Choose the correct option that the equation of a vibrating string is equivalent to the equation of a wave. (a) True or (b) False.	5	CO4	
	SECTION B			

Q 7	Determine Fourier series expansion for a periodic function of period 4 which is		
	defined as $f(x) = x , -2 < x < 2.$	10	CO1
Q 8	Deduce that		
	$\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots$	10	CO1
	by using the sine series for $f(x) = 1$ in $0 < x < 1$.		
Q 9	Solve the Bessel's equation		
	$x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} + (x^{2} - n^{2})y = 0.$	10	CO2
Q 10	Ascertain that Legendre polynomial $P_n(x)$ is the coefficient of z^n in the expansion of $(1 - 2xz + z^2)^{-1/2}$ in ascending powers of z.	10	CO2
Q 11	Evaluate $\int_{0}^{1} \frac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}} dx$ using the transformation property of beta function as	10	CO3
	$\beta(m,n) = \int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} dx$		
	SECTION-C	1	
Q 12	Create one dimensional (1D) wave equation for a stretched string with schematic diagram and apply the method of separation of variables to solve it.		
	OR	20	CO4
	Create two dimensional (2D) wave equation for a rectangular membrane with schematic diagram and apply the method of separation of variables to solve it.		