Name: Enrolment No:				
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, December 2020Course: Elements of Modern PhysicsSemester: IProgram: B.Sc. (H) Chemistry & B.Sc. (H) MathsTime: 3 HrsCourse Code: PHYS 2009Max. Marks				
			ion A y. Each question carries 5 marks.	
S.No.	Question			CO
Q1	(i) (ii) (iii)	 particle is (2) (a) Half of the particle speed (b) Equal to the particle speed (c) More than the particle speed (d) Equal to the speed of light For the microscopic particles, the (a) wave, particle (b) particle (c) particl	associated with a non-relativistically freely moving nature is dominant over the nature (2) article, wave nature. (1) on-electromagnetic	CO2
Q2	(i) (ii) (iii)	 level from other higher levels is called (a) Lyman series (b) Balmer series (c) Paschem series (d) Brackett series (e) Pfund series Who postulated that the electrons orf (a) Rutherford (b) Bohr 	ctronic transition takes place to the fourth energy ed (2) bit the nucleus like planets orbit the Sun? (2) (c) Einstein (d) de-Broglie are electrons emit electromagnetic radiation. (1)	CO2

Q3	The stability of Cl (A = 36, Z = 17) with respect to alpha, beta-plus, and beta-minus decay is to be determined. Do not consider the possibility of decay by electron capture. The following atomic masses are known:	
	$\frac{4}{2}He$ 4.002603	
	$^{32}_{15}P$ 31.973907	
	$^{36}_{16}S$ 35.967081	
	$^{36}_{17}Cl$ 35.968307	
	$^{36}_{18}Ar$ 35.967546	CO5
	The Cl (A = 36, Z = 17) nuclide is:	
	 (a) subject to beta-plus decay only (b) subject to beta-minus decay only (c) subject to alpha decay only 	
	 (c) subject to alpha decay only (d) not subject to alpha, beta-plus, or beta-minus decay (e) subject to beta-plus or beta-minus decay, but not to alpha decay 	
Q4	List out the properties of a wave function.	CO3
Q5	What is the role of moderator in a nuclear reactor?	CO5
Q6	Out of protons, electrons and neutrons which is the most suitable probe to study properties of nucleus and why?	CO5
	Section B All questions are compulsory. Each question carries 10 marks.	
Q7	Discuss the Davisson-Germer experiment.	CO1
Q8	A system is defined by the wave function $\varphi(x) = A\cos\left(\frac{2\pi x}{L}\right)$ for $-\frac{L}{4} \le x \le \frac{L}{4}$. Find the probability	
	of finding the particle between $x = 0$ and $x = \frac{L}{8}$.	CO3
Q9	Write a brief note on the semi-empirical mass formula inclusive of all terms of binding energy.	CO5
Q10	A piece of an ancient wooden box shows an activity of ¹⁴ C of 3.9 disintegrations per minute per gm of Carbon. Estimate the age of the box if the half-life of ¹⁴ C is 5568 years if the activity of fresh ¹⁴ C is 15.6 disintegrations per minute per gm.	CO5
Q11	What do you mean by pair production? Show that pair production can't happen in empty space.	CO5

Section C Attempt any one question. Each question carries 20 marks.				
Q12	Discuss the motion of an electron across a potential step of finite height. Calculate the reflection and transmission coefficients. A beam of particles with energy <i>E</i> is incident on a potential barrier with potential function $\begin{cases} V(x) = 0 & for \ x < 0 \\ V(x) = V_o & for \ 0 < x < a \\ V(x) = 0 & for \ x > a \end{cases}$ where the symbols have their usual meaning. Show that there is a finite probability of transmission even if $E < V_o$.	CO4		
Planck Boltzm Mass o Mass o	of some physical constants: 's constant, $h = 6.6 \ge 10^{-34} \text{ J.s}$ ann's constant, $k = 1.38 \ge 10^{-23} \text{ J/K}$ f electron, $m_e = 9.1 \ge 10^{-31} \text{ Kg}$ f proton, $m_p = 1.67 \ge 10^{-27} \text{ Kg}$			
Rydber Avogae Permitt	ty of light, $c = 3 \times 10^8 \text{ m/s}$ ty of light, $c = 3 \times 10^8 \text{ m/s}$ ty of source $R = 1.097 \times 10^7 \text{ m}^{-1}$ dro's number $= 6.023 \times 10^{23}$ tivity of free space, $\varepsilon_0 = 8.85 \times 10^{-12} \text{ F/m}$ tivity of free space, $\mu_0 = 4\pi \times 10^{-7} \text{ H/m}$			