Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2020

Course: MULTIVARIATE CALCULUSProgram: B.Sc. (Hons.) Mathematics

Course Code : MATH 2029

Semester : III Time : 03 Hour Max. Marks: 100

SECTION A

Attempt all questions. Each question carries 5 marks. This section contains multiple choice questions. For multiple choice question, only one option is correct.

S.No.		СО	
Q1	If $u = e^{xyz}$ then value of $\frac{\partial^3 u}{\partial x \partial y \partial z}$ is (A) $e^{xyz}(1 + 3xyz + x^2y^2z^2)$ (B) $e^{xyz}(1 + 3xyz + 2x^2y^2z^2)$ (C) $e^{xyz}(1 + 3xyz + 3x^2y^2z^2)$ (D) $e^{xyz}(1 + 3xyz + 4x^2y^2z^2)$	CO1	
Q2	The directional derivative of $\phi = x^2yz + 4xz^2$ at $(1, -2, 1)$ in the direction of $2\hat{i} - \hat{j} - 2\hat{k}$ is (A) $-\frac{10}{3}$ (B) $\frac{10}{3}$ (C) $\frac{13}{3}$ (D) $-\frac{13}{3}$	CO1	
Q3	What is the value of following double integral? $\int_{x=0}^{x=3} \int_{y=0}^{y=\frac{1}{x}} y e^{xy} dy dx$ (A) $-\frac{1}{3}$ (B) $\frac{1}{3}$ (C) $-\frac{1}{6}$ (D) $\frac{1}{6}$	CO2	
Q4	What is the area of the region bounded by the curves $xy = 2$, $4y = x^2$ and $y = 4$? (A) $\frac{31}{3} - 4\log 2$ (B) $\frac{31}{3} + 4\log 2$ (C) $\frac{28}{3} - 4\log 2$ (D) $\frac{28}{3} + 4\log 2$	CO2	
Q5	What is the volume generated by revolving a quadrant of the circle $x^2 + y^2 = a^2$, about its diameter? (A) $\frac{8}{3}\pi a^3$ (B) $\frac{6}{3}\pi a^3$ (C) $\frac{4}{3}\pi a^3$ (D) $\frac{2}{3}\pi a^3$	CO2	
Q6	If $\vec{F} = x^2 y \hat{\imath} + xz \hat{\jmath} + 2yz \hat{k}$ then $div(curl \vec{F})$ is (A) -1 (B) 0 (C) 1 (D) 3	CO3	
Attom	SECTION B		
Attempt all questions. Each question carries 10 marks. Question 11 has internal choice.			
Q7	Evaluate $\iint_R [[x + y]] dx dy$ over the rectangle $R = \{(x, y): 0 \le x \le 1, 0 \le y \le 2\}$, where $[[x + y]]$ denotes greatest integer less than or equal to $(x + y)$.	CO2	

Q8	Determine whether the line integral	
	$\int (2xyz^2)dx + (x^2z^2 + z\cos yz)dy + (2x^2yz + y\cos yz)dz$	
	is independent of the path of integration ? If so, then evaluate it from $(1,0,1)$ to	CO3
	$(0, \frac{\pi}{2}, 1).$	
00	Show that the function	
Q9	show that the function $f(x,y) = \begin{cases} (x+y)\sin\left(\frac{1}{x+y}\right), & x+y \neq 0\\ 0, & x+y = 0 \end{cases}$ is continuous at (0,0) but its partial derivatives f_x and f_y do not exist at (0,0).	CO1
Q10	Find the maximum and minimum distances of the point (3,4,12) from the sphere $x^2 + y^2 + z^2 = 1$.	CO1
Q11	Calculate the volume of the solid bounded by the planes $x = 0$, $y = 0$, $x + y + z = 1$ and $z = 0$.	
	OR	
		CO2
	Evaluate the following by changing into polar coordinates $\sqrt{\frac{1}{2}}$	
	$\int_0^a \int_0^{\sqrt{a^2 - y^2}} y^2 \sqrt{x^2 + y^2} dx dy.$	
SECTION C		
Question of this section carries 20 marks and it has internal choice.		
Q12	Verify Stokes' theorem for $\vec{F} = (y - z + 2)\hat{i} + (yz + 4)\hat{j} - xz\hat{k}$	
	over the surface of a cube $x = 0, y = 0, z = 0, x = 2, y = 2, z = 2$ above the	
	xy –plane open from the bottom.	
	OR	CO3
	Verify Gauss divergence theorem for $\vec{F} = (x^2 - yz)\hat{i} + (y^2 - zx)\hat{j} + (z^2 - xy)\hat{k}$ taken over the rectangular parallelepiped $0 \le x \le a, 0 \le y \le b, 0 \le z \le c$.	