Name: Enrolment No:		
Course Program Course	UNIVERSITY OF PETROLEUM AND ENERGY STUDIE End Semester Examination, December 2020	Hour
SECTION A Attempt all questions. Each question carries 5 marks. This section contains multiple choice questions. For multiple choice question, only one option is correct.		
S.No.		CO
Q1	If $u=e^{x y z}$ then value of $\frac{\partial^{3} u}{\partial x \partial y \partial z}$ is (A) $e^{x y z}\left(1+3 x y z+x^{2} y^{2} z^{2}\right)$ (B) $\quad e^{x y z}\left(1+3 x y z+2 x^{2} y^{2} z^{2}\right)$ (C) $e^{x y z}\left(1+3 x y z+3 x^{2} y^{2} z^{2}\right)$ (D) $\quad e^{x y z}\left(1+3 x y z+4 x^{2} y^{2} z^{2}\right)$	CO1
Q2	The directional derivative of $\phi=x^{2} y z+4 x z^{2}$ at $(1,-2,1)$ in the direction of $2 \hat{\imath}-$ $\hat{\jmath}-2 \hat{k}$ is (A) $-\frac{10}{3}$ (B) $\frac{10}{3}$ (C) $\frac{13}{3}$ (D) $-\frac{13}{3}$	CO1
Q3	What is the value of following double integral? $\int_{x=0}^{x=3} \int_{y=0}^{y=\frac{1}{x}} y e^{x y} d y d x$ (A) $-\frac{1}{3}$ (B) $\frac{1}{3}$ (C) $-\frac{1}{6}$ (D) $\frac{1}{6}$	CO2
Q4	What is the area of the region bounded by the curves $x y=2,4 y=x^{2}$ and $y=4$? (A) $\frac{31}{3}-4 \log 2$ (B) $\frac{31}{3}+4 \log 2$ (C) $\frac{28}{3}-4 \log 2$ (D) $\frac{28}{3}+4 \log 2$	CO2
Q5	What is the volume generated by revolving a quadrant of the circle $x^{2}+y^{2}=a^{2}$, about its diameter? (A) $\frac{8}{3} \pi a^{3}$ (B) $\frac{6}{3} \pi a^{3}$ (C) $\frac{4}{3} \pi a^{3}$ (D) $\frac{2}{3} \pi a^{3}$	CO2
Q6	If $\vec{F}=x^{2} y \hat{\imath}+x z \hat{\jmath}+2 y z \hat{k}$ then $\operatorname{div}(\operatorname{curl} \vec{F})$ is (A) -1 (B) 0 (C) 1 (D) 3	CO3
Attempt all questions. Each question carries 10 marks. Question 11 has internal choice.		
Q7	Evaluate $\iint_{R}[[x+y]] d x d y$ over the rectangle $R=\{(x, y): 0 \leq x \leq 1,0 \leq y \leq 2\}$, where $[[x+y]]$ denotes greatest integer less than or equal to $(x+y)$.	CO2

Q8	Determine whether the line integral $\int\left(2 x y z^{2}\right) d x+\left(x^{2} z^{2}+z \cos y z\right) d y+\left(2 x^{2} y z+y \cos y z\right) d z$ is independent of the path of integration ? If so, then evaluate it from $(1,0,1)$ to ($0, \frac{\pi}{2}, 1$).	$\mathrm{CO3}$
Q9	Show that the function $f(x, y)=\left\{\begin{array}{cl} (x+y) \sin \left(\frac{1}{x+y}\right), & x+y \neq 0 \\ 0, & x+y=0 \end{array}\right.$ is continuous at $(0,0)$ but its partial derivatives f_{x} and f_{y} do not exist at $(0,0)$.	CO1
Q10	Find the maximum and minimum distances of the point $(3,4,12)$ from the sphere $x^{2}+$ $y^{2}+z^{2}=1$.	CO1
Q11	Calculate the volume of the solid bounded by the planes $x=0, y=0, x+y+z=1$ and $z=0$. OR Evaluate the following by changing into polar coordinates $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-y^{2}}} y^{2} \sqrt{x^{2}+y^{2}} d x d y$	CO 2
SECTION C Question of this section carries 20 marks and it has internal choice.		
Q12	Verify Stokes' theorem for $\vec{F}=(y-z+2) \hat{\imath}+(y z+4) \hat{\jmath}-x z \hat{k}$ over the surface of a cube $x=0, y=0, z=0, x=2, y=2, z=2$ above the $x y$-plane open from the bottom. OR Verify Gauss divergence theorem for $\vec{F}=\left(x^{2}-y z\right) \hat{\imath}+\left(y^{2}-z x\right) \hat{\jmath}+\left(z^{2}-x y\right) \hat{k}$ taken over the rectangular parallelepiped $0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c$.	CO3

