Name: **Enrolment No:** UNIVERSITY OF PETROLEUM AND ENERGY STUDIES **End Semester Examination, December 2020 Course: Group Theory I** Semester: III **Programme: B.Sc. (Hons.) Mathematics** Time: 03 hrs. **Course Code: MATH 2028** Max. Marks: 100 **SECTION A** Instructions: Attempt all questions. Each question will carry 5 marks. S. No. СО Ouestion If f = (1 2 3), g = (2 4 3) and h = (1 3 4) are three permutations on 1, 2, 3, 4, 5, 6; then the product fgh is equal to A. $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 5 \\ 1 & 2 & 3 & 4 & 6 & 6 \end{pmatrix}$ B. $\begin{pmatrix} 1 & 2 & 3 & 4 & 6 & 5 \\ 5 & 6 & 2 & 1 & 5 & 6 \end{pmatrix}$ C. $\begin{pmatrix} 1 & 2 & 5 & 1 & 4 & 3 \\ 1 & 6 & 5 & 1 & 3 & 5 \end{pmatrix}$ D. $\begin{pmatrix} 1 & 2 & 5 & 3 & 6 & 4 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix}$ **Q1 CO1** If the elements a, b of a group commute and O(a) = m, O(b) = n, where m and n are relatively prime, then O(ab) is A. *m* Q2 B. *n* **CO2** C. mn D. $\frac{m}{n}$ Which one is False? A. Every quotient group of a cyclic group is cyclic and the converse is not true. Q3 B. Every quotient group of a commutative group is abelian and the converse is also true. **CO3** C. If Z denote the centre of a group G and G/Z is cyclic then G is abelian. D. None of the above How many generators are there of the cyclic group *G* of order 8? A. 1 B. 2 **Q4 CO3** C. 3 D. 4

Q5	If <i>G</i> is the additive group of integers and <i>H</i> is the subgroup of <i>G</i> obtained on multiplying the elements of <i>G</i> by 5, then the index of <i>H</i> in <i>G</i> is A. 2 B. 3 C. 5 D. 7	CO4
Q6	D. 7 The mapping $f: C \to R$ such that $f(x + iy) = x$ is a homomorphism of the additive group of complex numbers onto the additive group of real numbers. The kernel of f consists of all complex numbers whose A. Real part is zero B. Imaginary part is zero C. Modulus is one D. None of the above	CO5
	SECTION B	
Instru	ctions: Attempt all questions. Each question will carry 10 marks. Question 11 has internal cl	noice.
Q7	Show that the set of six transformations f_1 , f_2 , f_3 , f_4 , f_5 , f_6 on the set of complex numbers defined by $f_1(z) = z$, $f_2(z) = \frac{1}{z}$, $f_3(z) = 1 - z$, $f_4(z) = \frac{z}{z-1}$, $f_5(z) = \frac{1}{1-z}$, $f_6(z) = \frac{z-1}{z}$, forms a finite non-abelian group of order six with respect to the composition known as composite of two functions or product of two functions.	CO1
Q8	If in a group G , $xy^2 = y^3x$ and $yx^2 = x^3y$, then show that $x = y = e$ where e is the identity of G.	CO2
Q9	Prove that, a subgroup H of a group G is a normal subgroup of G if and only if each left coset of H in G is a right coset of H in G . Also, show that every subgroup of an abelian group is normal.	CO3
Q10	State and prove Lagrange's theorem. Use Lagrange's theorem to prove that a finite group cannot be expressed as the union of two of its proper subgroups.	CO4
Q11	If p is a prime number and G is a non abelian group of order p^3 , show that the centre of G has exactly p elements. OR Prove that, every group of prime order is cyclic.	CO4
	SECTION C	
Instru	ctions: Attempt all questions. Each question will carry 20 marks. Question 12 has internal cl	noice.
Q12	Define Homomorphism of groups and Kernel of a Homomorphism. Prove that every homomorphic image of a group G is isomorphic to some quotient group of G . Also, show that every homomorphic image of an abelian group is abelian and converse is not true. OR	CO5