Name: Enrolment No:		
Cours Progra Cours	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2020 Group Theory I mme: B.Sc. (Hons.) Mathematics Code: MATH 2028	$\begin{aligned} & : ~ I I I \\ & : 03 \mathrm{hrs} . \\ & \mathbf{1 0 0} \end{aligned}$
Instru	SECTION A SEIons: Attempt all questions. Each question will carry 5 marks.	
S. No.	Question	CO
Q1	If $f=(123), g=(243)$ and $h=(134)$ are three permutations on $1,2,3,4,5,6$; then the product $f g h$ is equal to A. $\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 5 \\ 1 & 2 & 3 & 4 & 6 & 6\end{array}\right)$ B. $\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 6 & 5 \\ 5 & 6 & 2 & 1 & 5 & 6\end{array}\right)$ C. $\left(\begin{array}{llllll}1 & 2 & 5 & 1 & 4 & 3 \\ 1 & 6 & 5 & 1 & 3 & 5\end{array}\right)$ D. $\left(\begin{array}{llllll}1 & 2 & 5 & 3 & 6 & 4 \\ 1 & 2 & 3 & 4 & 5 & 6\end{array}\right)$	CO1
Q2	If the elements a, b of a group commute and $O(a)=m, O(b)=n$, where m and n are relatively prime, then $O(a b)$ is A. m B. n C. $m n$ D. $\frac{m}{n}$	CO2
Q3	Which one is False? A. Every quotient group of a cyclic group is cyclic and the converse is not true. B. Every quotient group of a commutative group is abelian and the converse is also true. C. If Z denote the centre of a group G and G / Z is cyclic then G is abelian. D. None of the above	CO3
Q4	How many generators are there of the cyclic group G of order 8 ? A. 1 B. 2 C. 3 D. 4	CO3

Q5	If G is the additive group of integers and H is the subgroup of G obtained on multiplying the elements of G by 5 , then the index of H in G is A. 2 B. 3 C. 5 D. 7	CO4
Q6	The mapping $f: C \rightarrow R$ such that $f(x+i y)=x$ is a homomorphism of the additive group of complex numbers onto the additive group of real numbers. The kernel of f consists of all complex numbers whose A. Real part is zero B. Imaginary part is zero C. Modulus is one D. None of the above	C05
Instr	SECTION B ctions: Attempt all questions. Each question will carry 10 marks. Question 11 has internal	
Q7	Show that the set of six transformations $f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}$ on the set of complex numbers defined by $f_{1}(z)=z, f_{2}(z)=\frac{1}{z}, f_{3}(z)=1-z, f_{4}(z)=\frac{z}{z-1}, f_{5}(z)=\frac{1}{1-z}, f_{6}(z)=\frac{z-1}{z},$ forms a finite non-abelian group of order six with respect to the composition known as composite of two functions or product of two functions.	CO1
Q8	If in a group $G, x y^{2}=y^{3} x$ and $y x^{2}=x^{3} y$, then show that $x=y=e$ where e is the identity of G.	CO2
Q9	Prove that, a subgroup H of a group G is a normal subgroup of G if and only if each left coset of H in G is a right coset of H in G. Also, show that every subgroup of an abelian group is normal.	CO3
Q10	State and prove Lagrange's theorem. Use Lagrange's theorem to prove that a finite group cannot be expressed as the union of two of its proper subgroups.	CO4
Q11	If p is a prime number and G is a non abelian group of order p^{3}, show that the centre of G has exactly p elements. OR Prove that, every group of prime order is cyclic.	CO4
Instructions: Attempt all questions. Each question will carry 20 marks. Question 12 has internal choice.		
Q12	Define Homomorphism of groups and Kernel of a Homomorphism. Prove that every homomorphic image of a group G is isomorphic to some quotient group of G. Also, show that every homomorphic image of an abelian group is abelian and converse is not true. OR State and prove, Second and Third law of Isomorphism.	C05

