UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2020
Programme: B.Sc. (Hons.) Physics and Chemistry
Course Name: Differential Equations
Course Code: MATH 1034
No. of page/s: 02

Section A

Attempt all the questions. This section contains 6 multiple-choice questions and one option is correct. Write the correct option. Each question carries 5 marks.

1.	All real solutions of the differential equation $\frac{d^{2} y}{d x^{2}}+2 a \frac{d y}{d x}+b y=\cos x$ (where a and b are real constants) are periodic if : A. $a=1$ and $b=0$ B. $a=0$ and $b=1$ C. $a=1$ and $b \neq 0$ D. $a=0$ and $b \neq 1$	CO3
2.	A particular solution of $4 x^{2} \frac{d^{2} y}{d x^{2}}+8 x \frac{d y}{d x}+y=\frac{4}{\sqrt{x}}$ is: A. $\frac{1}{2 \sqrt{x}}$ B. $\frac{\log x}{2 \sqrt{x}}$ C. $\frac{(\log x)^{2}}{2 \sqrt{x}}$ D. $\frac{\{(\log x) \sqrt{x}\}}{2}$	CO 3
3.	Let the general integral of the partial differential equation $(2 x y-1) \frac{\partial z}{\partial x}+\left(z-2 x^{2}\right) \frac{\partial z}{\partial y}=2(x-y z)$ be given by $F(u, v)=0$, where $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a continuously differentiable function. (\mathbb{R} is the set of all real numbers and $\left.\mathbb{R}^{2}=\{(x, y): x, y \in \mathbb{R}\}\right)$. Which of the following is true? A. $u=x^{2}+y^{2}+z, v=x z+y$ B. $u=x^{2}+y^{2}-z, v=x z-y$ C. $u=x^{2}-y^{2}+z, v=y z+x$ D. $u=x^{2}+y^{2}-z, v=y z-x$	$\mathrm{CO5}$
4.	The differential equation $\left(1-x^{2}\right) \frac{\partial^{2} z}{\partial x^{2}}-2 x y \frac{\partial^{2} z}{\partial x \partial y}+\left(1-y^{2}\right) \frac{\partial^{2} z}{\partial y^{2}}+x \frac{\partial z}{\partial x}+3 x^{2} y \frac{\partial z}{\partial y}-2 z=0$ is elliptic in the region: A. $x^{2}+y^{2}<0$ B. $x^{2}+y^{2}<1$ C. $x^{2}+y^{2}>0$ D. $x^{2}+y^{2}>1$	CO1

5.	The solution of $\frac{d y}{d t}-3 y=e^{2 t}, y(0)=1$ is: A. $2 e^{2 t}+e^{3 t}$ B. $2 e^{3 t}+e^{2 t}$ C. $2 e^{3 t}-e^{2 t}$ D. $2 e^{2 t}-e^{3 t}$	CO2
6.	The particular integral of the differential equation $\frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}+9 y=5^{x}-\log _{e} 2$ is: A. $\frac{1}{\left(\log _{e} 5+3\right)^{2}}-\frac{1}{9} \log _{e} 2$ B. $\frac{1}{\left(\log _{e} 5+3\right)^{2}} 5^{x}-\frac{1}{9} \log _{e} 2$ C. $\frac{1}{\left(\log _{e} 5+3\right)^{2}} 5^{x}+\frac{1}{9} \log _{e} 2$ D. $\frac{1}{\left(\log _{e} 5+3\right)^{2}} 5^{x}$	$\mathrm{CO3}$
SECTION BAttempt all the questions. This section contains descriptive type's questions. Each question carries 10 marks.		
7.	Form the partial differential equation by eliminating h and k from the equation $(x-h)^{2}+$ $(y-k)^{2}=\lambda^{2}$.	CO1
8.	According to Newton's law of cooling, the rate at which a substance cools in moving air is proportional to the difference between the temperature of the substance and that of the air. If the temperature of the air is 290 K and the substance cools from 370 K to 330 K in 10 minutes, find time when the temperature will be 295 K .	CO 2
9.	Solve $\left(D^{2}+3 D+2\right) y=e^{2 x} \sin x$.	$\mathrm{CO3}$
10.	Find $f(z)$ such that $\left[\frac{\left(y^{2}+z^{2}-x^{2}\right)}{2 x}\right] d x-y d y+f(z) d z=0$ is integrable. Hence solve it.	$\mathrm{CO4}$
11.	Apply the method of variation of parameters to solve $\frac{d^{2} y}{d x^{2}}-y=\frac{2}{1+e^{x}}$.	CO 3

SECTION C

This section contains descriptive type's question and it has internal choices. This question carries 20 marks.

12.	Find the complete integral of $\left.2(z+p x+q y)=y p^{2}\right)$ where $p=\frac{\partial z}{\partial x}$ and $q=\frac{\partial z}{\partial y}$.	
	OR	CO5
Solve $x\left(x^{2}+3 y^{2}\right) \frac{\partial z}{\partial x}-y\left(3 x^{2}+y^{2}\right) \frac{\partial z}{\partial y}=2 z\left(y^{2}-x^{2}\right)$.		

