	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES	
End Semester Examination, December 2020 Programme: B.Sc. (Hons.) Physics and Chemistry Semester: II Course Name: Differential Equations Max. Marks: Course Code: MATH 1034 Duration: 3 H No. of page/s: 02 Section A		
	npt all the questions. This section contains 6 multiple-choice questions and one option is co e the correct option. Each question carries 5 marks.	rrect.
1.	All real solutions of the differential equation $\frac{d^2y}{dx^2} + 2a\frac{dy}{dx} + by = \cos x$ (where <i>a</i> and <i>b</i> are real constants) are periodic if : A. $a = 1$ and $b = 0$ B. $a = 0$ and $b = 1$ C. $a = 1$ and $b \neq 0$ D. $a = 0$ and $b \neq 1$	CO3
2.	A particular solution of $4x^2 \frac{d^2y}{dx^2} + 8x \frac{dy}{dx} + y = \frac{4}{\sqrt{x}}$ is: A. $\frac{1}{2\sqrt{x}}$ B. $\frac{\log x}{2\sqrt{x}}$ C. $\frac{(\log x)^2}{2\sqrt{x}}$ D. $\frac{\{(\log x)\sqrt{x}\}}{2}$	CO3
3.	Let the general integral of the partial differential equation $(2xy - 1)\frac{\partial z}{\partial x} + (z - 2x^2)\frac{\partial z}{\partial y} = 2(x - yz)$ be given by $F(u, v) = 0$, where $F: \mathbb{R}^2 \to \mathbb{R}$ is a continuously differentiable function. (\mathbb{R} is the set of all real numbers and $\mathbb{R}^2 = \{(x, y): x, y \in \mathbb{R}\}$). Which of the following is true? A. $u = x^2 + y^2 + z, v = xz + y$ B. $u = x^2 + y^2 - z, v = xz - y$ C. $u = x^2 - y^2 + z, v = yz + x$ D. $u = x^2 + y^2 - z, v = yz - x$	CO5
4.	The differential equation $(1 - x^2)\frac{\partial^2 z}{\partial x^2} - 2xy\frac{\partial^2 z}{\partial x \partial y} + (1 - y^2)\frac{\partial^2 z}{\partial y^2} + x\frac{\partial z}{\partial x} + 3x^2y\frac{\partial z}{\partial y} - 2z = 0$ is elliptic in the region: A. $x^2 + y^2 < 0$ B. $x^2 + y^2 < 1$ C. $x^2 + y^2 > 0$ D. $x^2 + y^2 > 1$	CO1

	The solution of $\frac{dy}{dt} - 3y = e^{2t}$, $y(0) = 1$ is:	
	A. $2e^{2t} + e^{3t}$	
5.	B. $2e^{3t} + e^{2t}$	CON
	C. $2e^{3t} - e^{2t}$	CO2
	D. $2e^{2t} - e^{3t}$	
	The particular integral of the differential equation $\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 9y = 5^x - \log_e 2$ is:	
	A. $\frac{1}{(\log_e 5+3)^2} - \frac{1}{9}\log_e 2$	
	B. $\frac{1}{(\log_e 5+3)^2} 5^x - \frac{1}{9} \log_e 2$	
6.		CO3
	C. $\frac{1}{(\log_e 5+3)^2} 5^x + \frac{1}{9} \log_e 2$	000
	D. $\frac{1}{(\log_{a} 5+3)^{2}} 5^{x}$	
	$(\log_e 5+3)^2$	
	SECTION B	
Attor	npt all the questions. This section contains descriptive type's questions. Each question carrie	og 10
mark		.5 10
7.	Form the partial differential equation by eliminating <i>h</i> and <i>k</i> from the equation $(x - h)^2 + \frac{1}{2}$	
	$(y-k)^2 = \lambda^2.$	CO1
	According to Newton's law of cooling, the rate at which a substance cools in moving air is	
8.	proportional to the difference between the temperature of the substance and that of the air. If the temperature of the air is 200 K and the substance cools from 270 K to 220 K in 10 minutes, find time	CON
	temperature of the air is 290 K and the substance cools from 370 K to 330 K in 10 minutes, find time when the temperature will be 205 K	CO2
	when the temperature will be 295 K.	
9.	Solve $(D^2 + 3D + 2)y = e^{2x} \sin x$.	CO3
		CO3
10	$[x_{1}, y_{2}] = [(y_{1}^{2} + z_{1}^{2} - x_{1}^{2})]$	
10.	Find $f(z)$ such that $\left[\frac{(y^2+z^2-x^2)}{2x}\right]dx - ydy + f(z)dz = 0$ is integrable. Hence solve it.	CO4
11	Apply the method of variation of parameters to solve $\frac{d^2y}{dx^2} - y = \frac{2}{1+e^x}$.	
11.	Apply the method of variation of parameters to solve $\frac{1}{dx^2} - y = \frac{1}{1+e^x}$.	CO3
	SECTION C	
	section contains descriptive type's question and it has internal choices. This question carries	20
mark		
	Find the complete integral of $2(z + px + qy) = yp^2$ where $p = \frac{\partial z}{\partial x}$ and $q = \frac{\partial z}{\partial y}$.	
12.	OR	CO5
	Solve $x(x^2 + 3y^2)\frac{\partial z}{\partial x} - y(3x^2 + y^2)\frac{\partial z}{\partial y} = 2z(y^2 - x^2).$	003