Name: Enrolment No:		
Cours Progr Cours	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, Dec. 2020 Fluid Mechanics in Petroleum Engineering : B. Tech. APE - UP Code: PEAU 2005	100
SECTION A 1. Each Question will carry 5 Marks 2. Instruction: Fill in the blanks or write short answers, where it is necessary. All questions are compulsory. Assume if any data missing.		
S. No.	Question	CO
Q 1	Two water tanks are connected to each other through a mercury manometer with inclined tubes, as shown in Fig. 1. If the pressure difference between the two tanks is 20 kPa , Write the value of $\boldsymbol{a}=$ \qquad and $\boldsymbol{\theta}=$ \qquad . Figure 1. Manometer with inclined tubes.	CO1
Q 2	A crane is used to lower weights into the sea (density $=1025 \mathrm{~kg} / \mathrm{m}^{3}$) for an underwater construction project. Determine the tension in the rope of the crane due to a rectangular $0.4 \mathrm{~m} \times 0.4 \mathrm{~m} \times 3 \mathrm{~m}$ concrete block (density $=2300 \mathrm{~kg} / \mathrm{m}^{3}$) when it is (a) suspended in the air and (b) completely immersed in water. Write the weight of concrete block in air is \qquad and completely submerged in water is \qquad	CO2
Q 3	A solid cylinder of diameter 4.0 m has a height of 4.0 m . Find the meta-centric height of the cylinder if the specific gravity of the material of cylinder $=0.6$ and it is floating in water with its axis vertical. State weather the equilibrium is table or unstable. Write the value of meta-centric height \qquad _.	CO2
Q 4	A horizontal venturimeter with inlet diameter 30 cm and throat diameter 15 cm is used to measure the flow of oil of sp. gr. 0.8. The discharge of oil through venturimeter is 50 litres/s, Take $\mathrm{C}_{\mathrm{d}}=0.98$. Write the reading of the oil-mercury differential manometer (x) \qquad	CO3

| Q 5 | Classify the losses of energy when a fluid is flowing through a pipe, the fluid
 experiences some resistances due to which some of the energy of fluid is lost. | CO4 |
| :--- | :--- | :--- | :--- |
| Q 6 | A gasoline line is connected to a pressure gage through a double-U manometer, as
 shown in Fig. 2. If the reading of the pressure gauge is 260 kPa. Write the gauge
 pressure of the gasoline line (Pgasoline) | |

	(ii) Flow through parallel pipes OR At a sudden enlargement of a water main from 240 mm to 480 mm diameter, the hydraulic gradient rises by 10 mm . Estimate the rate of flow.	
SECTION C 1. Each Question carries 20 Marks. 2. Instruction: All questions are compulsory. Assume if any data missing.		
Q 12	Develop a relation to find maximum discharge for a broad-crested weir. A broad-crested weir of length 40 m , has 400 mm height of water above its crest. Take $\mathrm{C}_{\mathrm{d}}=0.6$. (i) Find the maximum discharge and neglect velocity of approach. (ii) If the velocity of approach is to be taken into consideration, find the maximum discharge when the channel has a cross-sectional area of $40 \mathrm{~m}^{2}$ on the upstream side. OR Derive an expressions for following if the viscous fluid flowing through a circular pipe and the viscous fluid flowing between two parallel plates. (i) Velocity distribution across a section. (ii) Ratio of maximum velocity to the average velocity. (iii) Drop of pressure for a given length	CO 3

