Name: Enrolment No:				
		VPLJ		
	UNIVERSITY OF PETROL	EUM AND ENERGY STUDIES		
	End Semester Ex	xamination, Dec 2019		
Course	ш			
Program: APE UP Time: 3 hrs. Max. Marks:			100	
Instru	ctions: answer all the questions. Internal choi	ce is given.		
	SEC	TION A		
		he answer		
S. No.			Marks	СО
Q 1	Explain the following terms: (a) Kelvin-Pla (c) Carnot theorem, (d) Clausius inequality second kind.		5	CO3
Q 2	How is the concept of entropy and unavailabil	ity energy related to each other	5	CO3
Q 3	Discuss the use of air standard cycle analysis		5	CO6
		(no partial marking) for Q4, 5, and 6	_	
Q 4	 1.In spark ignition four stroke cycle engine cam shaft runs 2.Spark ignition engine 3.Compression ignition system 4.For maximum power of SI engine the fuel air ratio is 5. Ratio of break power to fuel energy input 	 (a) Half the speed of crank shaft (b) Same speed of crank shaft (c) Petrol engine (d) Gas engine (e) Diesel engine (f) Lean 	5	CO6
Q 5	 A reverse Carnot cycle has COP equa to 4. The ratio of higher temperature to lower temperature Reverse Carnot cycle assume all process A Carnot refrigerator requires 70 KJ/min of work to produce 1 ton of refrigeration at -40 degree centigrad 	e (b) 3 (c) non flow and steady flow (d) transient flow (e) 100 KJ/min (f) 70 kJ/min	5	CO2

	 4. The COP of Carnot refrigerator is 3 and produce 1 ton of refrigeration. The work done is 		
Q 6	1. Triple point of water(a) solid vapor and liquid coexist2. The specific volume of ice when heating from zero degree centigrade(b) ice have maximum volume3. At critical point of water(c) increases steadily4. Throttling calorimeter used for measuring dryness fraction above(e) p= 231.2 bar(f) v= 0.00317 m3/kg (g) 0.98 (e) 0.62	5	CO5
	SECTION B		
Q 7	Upload pdf fileA reversible engine operates between temperatures T_1 and T ($T_1 > T$). A second	nd .	
	A reversible engine operates between temperatures T_1 and $T_1(T_1 > T)$. A second reversible engine at the same temperature "T" receives the energy rejected from this engine. The second engine rejects energy at temperature T_2 ($T_2 < T$). Show that temperature T is the arithmetic mean of temperatures T_1 and T_2 if the engines produce the same amount of work output.		C01
Q 8	It is given that temperature of the source and sink are equal to T_h and T_L . If the source and sink are finite i.e. as the heat engine operates the temperature of source fall and temperature of sink rises to an equilibrium temperature T_f . By the entropy principle prove that the T_f is an geometric mean of T_H and T_L .		CO4
Q 9	0.2 kg of air at 300°C is heated reversibly at constant pressure to 2066 K. Find the available and unavailable energies of the heat added. Take $T_0 = 30$ °C and Cp = 1.0047 kJ/kg K.		CO6
Q10	Prove that for an ideal gas		
	$S_2 - S_1 = C_p \log\left(\frac{V_2}{V_1}\right) + C_v \log\left(\frac{P_2}{P_1}\right)$ The terms have their usual meanings as 'S' is entropy, 'P' is pressure, 'V' is volume at thermodynamic state 1 and 2. Cp and Cv are the co-efficient at constant pressure		CO2

Q11	Two Carnot engines A and B are connected in series between two thermal reservoirs naintained at 1000 K and 100 K respectively. Engine A receives 1680 kJ of heat from the high-temperature reservoir and rejects heat to the Carnot engine B. Engine B takes in heat rejected by engine A and rejects heat to the low-temperature reservoir. If engines A and B have equal thermal efficiencies, determine (a) The heat rejected by engine B (b) The temperature at which heat is rejected by engine A.	10	CO3
	SECTION-C Upload pdf file		
Q 12.	Two engines are operating on ideal Otto cycle and Diesel cycle for which the followinginformation are available.Maximum temperature = 1277^{0} CExhaust temperature = 477^{0} CAmbient condition = 0.1 MPa and 37^{0} CAir consumption = 2 kg/minEstimate (a) compression ratio (b) air standard efficiency (c) power output	20	
	OR An eight cylinder four stroke petrol engine with bore and stroke of 10 cm each uses volatile fuel of composition C- 84%, H2-16 %. The throat diameter of choke tube is 40 mm. The volumetric efficiency at 3000 rpm is 0.75 referred to 0° C and 1.013 bar, The pressure depression is 0.116 bar and the temperature at throat is 16°C. if chemically correct air fuel ratio is supplied for combustion find (a) fuel consumption in kh/hr and (b) air velocity through tube. Assume R for 287 J/Kg ⁰ K for air and 971 J/Kg ⁰ K for fuel vapor		CO6