Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

Online End Semester Examination, December 2020

Course: Engineering Thermodynamics Program: B. Tech. ADE Course Code: MECH 2014 Semester: III Time 03 hrs. Max. Marks: 100

UPES

UNIVERSITY WITH A PURPOSE

SECTION A

- 1. Each Question will carry 5 Marks
- 2. Instruction: Write the statement / answer(s)

S. No.	Question $5 \times 6 \text{ M} = 30 \text{ M}$	CO
Q 1	Write down the Zeroth law of thermodynamics and state the practical application of the law in day to day life.	CO1
Q2	During one cycle the working fluid in an engine engages in two work interactions: 15 kJ to the fluid and 44 kJ from the fluid, and three heat interactions, two of which are known: 75 kJ to the fluid and 40 kJ from the fluid. Write down the magnitude and direction of the third heat transfer.	CO2
Q3	Discuss the conditions which must be fulfilled by a reversible process. Give some examples of ideal reversible processes.	C01
Q4	A closed system of constant volume experiences a temperature rise of 25 °C when a certain process occurs. The heat transferred in the process is 30 kJ. The specific heat at constant volume for the pure substance comprising the system is 1.2 kJ/kg°C, and the system contains 2.5 kg of this substance. Determine : (i) The change in internal energy ; (ii) The work done.	CO2
Q5	Give the following statements of second law of thermodynamics. (i) Clausius statement (ii) Kelvin-Planck statement.	CO1
Q6	A heat cycle is claimed to develop 0.4 kW by heat addition of 32.5 kJ/min. The temperature of heat source is 1990 K and that of sink is 850 K. Is the statement true?	CO1
	SECTION B	
	Each Question will carry 10 Marks	
2.	Instruction: Write short / brief notes $5 \times 10 \text{ M} = 50 \text{ M}$	
Q 7	1.2 m ³ of air is heated reversibly at constant pressure from 300 K to 600 K, and is then cooled reversibly at constant volume back to initial temperature. If the initial pressure is 1 bar, calculate the overall change in entropy. Take $C_p = 1.005 \text{ kJ/kg K}$ and $R = 0.287 \text{ kJ/kg K}$	CO2

Q 8	Derive an expression for Exergy balance for a closed system in terms of availability function.	CO2
Q 9	A refrigerator having COP of 6 is driven by an engine of 35% thermal efficiency. Determine the heat input to the engine for each MJ removed from the cold body by the refrigerator? If this system is used as a heat pump, how many MJ of heat would be available for heating for each MJ of heat input to the engine?	CO3
Q 10	Steam is supplied to a turbine at 1470 KN/m ² and internal energy of 2944.2 kJ/kg and specific volume of 0.16 m ³ /kg and velocity of 110 m/s. Exhaust takes place at 4.9 kN/m ² with internal energy of 1890 kJ/kg and specific volume equal to 26 m ³ /kg and velocity of 300 m/s. Heat loss from steam turbine is 21 kJ/kg. Potential energy change is negligible. Determine the shaft work out put/kg.	CO3
Q 11	Draw the vapour compression cycle on a T-s diagram and explain the working principle with all the components. Discuss the expression of the COP in terms of enthalpy.	CO3
	Section C	
	Each Question will carry 20 Marks	
	Each Question will carry 20 Marks	CO4

Saturated water and steam data for Q12

p	$T_{ m sat}$	Volume, m ³ /kg		Energy, kJ/kg		Enthalpy, kJ/kg			Entropy, kJ/(kg K)		
MPa	$^{\circ}\mathrm{C}$	v_f	v_g	u_f	u_g	h_f	h_g	h_{fg}	s_f	s_g	s_{fg}
0.0070	39.000	0.00100750	20.524	163.34	2428.0	163.35	2571.7	2408.4	0.55903	8.2745	7.7154
0.0075	40.290	0.00100800	19.233	168.74	2429.8	168.75	2574.0	2405.3	0.57627	8.2501	7.6738
0.58	157.506	0.00109905	0.32585	664.01	2565.7	664.65	2754.7	2090.0	1.9176	6.7707	4.8531
1 1		0.00110060				' i	5 m	· ·	5 S S S S S S S S S S S S S S S S S S S		
		0.00116103									
		0.00116336									
1.75	205.725	0.00116565	0.11343	876.13	2596.7	878.17	2795.2	1917.0	2.3845	6.3877	4.0032

Water/Steam at p = 1.6 MPa (Tsat = 201.370.)

T	v	\boldsymbol{u}	h	s
$^{\circ}\mathrm{C}$	m^3/kg	kJ/kg	kJ/kg	kJ/kg K
	0.15866			
	0.16190			
	0.16511			
330	0.16829	2832.8	3102.1	6.9997

T	v	u			h	s
$^{\circ}\mathrm{C}$	m ³ /k	g kJ/ł		ĸg	kJ/k§	g kJ/kg K
240	0.3856	58 2705		5.1	2936.	5 7.1426
250	0.3939		0 2721.3		2957.	6 7.1832
260	0.4020)8	2737	7.3	2978.	5 7.2230
T	v	1	\boldsymbol{u}		\boldsymbol{h}	s
$^{\circ}\mathrm{C}$	$\mathrm{m}^{3}/\mathrm{kg}$	kJ	/kg	kJ/kg		kJ/kg~K
290	0.42638	278	85.4	3()41.2	7.3373
300	0.43442	280	01.3	30)62.0	7.3740
310	0.44243	281	17.3	3()82.8	7.4100

Superheat steam data Water/Steam at p = 0.60 MPa (Tsat = 158.826 °C)