Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES **Online End Semester Examination, Dec 2020**

Course: Artificial Intelligence Semester: VII Program: B Tech (CSE-ECRA) Time 03 hrs.

Course Code: CSEG-3005 Max. Marks: 100

SECTION A

- 1. Each Question will carry 5 Marks
- 2. Instruction: Answer the following

S. No.	Question	CO			
Q 1	How does alpha-beta pruning overcome the shortcomings of min-max game search algorithm?				
Q2	Differentiate between Inductive and Deductive Machine Learning. Give example				
Q3	Describe the PEAS environment for following Intelligent Agent: 'Automated Taxi'	CO1			
Q4	(a). Given tree below, in order to reach goal node 'L', list the order in which nodes will be visited in (i). Breadth first search (ii). Depth first search. [2.5 Marks] (b) Discuss how heuristic search techniques are different from uninformed search techniques. Give at least 2 differences [2.5 Marks]	CO2			
Q5	Give one real life example of when regression analysis is used?	CO4			
	Why are neural networks most widely used computational methodology for modern data	CO4			
Q6	processing paradigms				

Q 7	Discuss applications of AI, in health care sector.	CO1

Q 8	With a neat labeled illustration, elaborate on problems in Hill Climbing Search. Briefly outline the solutions	CO2
Q 9	Using the following graph, demonstrate how best path is computed using (a). Greedy search (b). A* search S B T C C D C	CO2
Q 10 Q 11	Differentiate between forward chaining and backward chaining. Use an example to explain.	CO3
Q 11	(a). Unify the following : $p(x,f(y)) , p(a,f(g(z))) \hspace{1cm} [1 M]$	
	(b). Convert to Predicate Logic [2 M] (i). Bill takes either analytics or geometry not both (ii). Every example in the book had helped some student in the class (c). Some axioms are given below: [7 M]	CO3
	 Every bird sleeps in some tree. Every loon is a bird, and every loon is aquatic. Every tree in which any aquatic bird sleeps is beside some lake. Anything that sleeps in anything that is beside any lake eats fish. Prove by 'resolution by refutation': Every loon eats fish. (i)Convert to clausal form (ii). Do resolution by refutation (iii) Draw resolution tree 	

Section C

- 1. Each Question carries 20 Marks.
- 2. Instruction: Write long answer.
- Q12 Solve using graphical method the optimization problem represented below

Minimize
$$Z=3x_1 + 5x_2$$

St,
 $x_1+3x_2 >= 3$
 $x_1 + x_2 >= 2$

$$x_1, x_2 >= 0$$

OR

Given below is data set with four variables and 5th variable is dependent variable. Use Naïve Bayes' Classifier to find, whether the person will be suffering from disease 'Z', if having conditions such as, **for Blood Pressure=high, Fever=no, Diabetes=yes and Vomit=yes**.

CO₄

Blood Pressure	Fever	Diabetes	Vomit	Suffering from disease 'Z	
high	high	yes	no	no	
high	high	yes	yes	no	
low	high	yes	no	yes	
normal	mild	yes	no	yes	
normal	no fever	no	no	yes	
normal	no fever	no	yes	no	
low	no fever	no	yes	yes	
high	mild	yes	no	no	
high	no fever	no	no	yes	
normal	mild	no	no	yes	
high	mild	no	yes	yes	
low	mild	yes	yes	yes	
low	high	no	no	yes	
normal	mild	yes	yes	no	