Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, December 2020			
Course: Cryptography and Network Security Semester: VII Programme: B.Tech. (CSE) Time: 03 hrs. Course Code: (CSEG4001) Max. Marks: 100 Instructions: Attempt all questions. There are internal choices in Q. No. 11 and 12.			
SECTION ANote: Answers in this section are to be typed in and each question will carry 5 marks.			
Q 1	(a) Amit buys a product from a manufacturer and pays for it electronically, but the manufacturer later refuses having received the money and asks to be paid. This kind of act or attack is categorized as \qquad (b) List the names of security services specified under ITU-T(X.800). (b) Which of the listed below are not security mechanisms: (i) Data Integrity (ii) Encipherment (iii) Anti-Phishing (iv) Traffic Padding (v) Nonrepudiation	1, 3, 1	CO1
Q 2	(a) Which elements in the set $\mathbf{Z}_{\mathbf{5}}=\{0,1,2,3,4\}$ are not members of the set $\mathbf{Z}_{\mathbf{5}}^{*}$? (b) Result of $-16 \bmod 13=$ \qquad (c) State either true or false: $-3 \equiv 7(\bmod 5)$	2,2,1	CO1
Q 3	(a) In GF(7), the result of $5 \times 4=$ \qquad and $6 \div 3=$ \qquad (b) The three common algebraic structures in Cryptography are \qquad \qquad , and \qquad	2, 3	CO 2
Q 4	(a) A standard DES implementation accepts \qquad bits of plaintext, \qquad bits of secret key, and usually comprises of \qquad rounds. (b) Define confusion and diffusion in the context of block ciphers.	3,2	CO 2
Q 5	(a) The result of $\phi(10)=$ \qquad . (b) The number of elements in $\boldsymbol{Z}_{\mathbf{1 5}}^{*}$ is \qquad . (c) Source repudiation can be handled using public key application called \qquad	2, 2, 1	CO3
Q 6	(a) Name the hash algorithms used by SSL in order to provide message integrity. (b) SSL provides four protocols in two layers. Here the record protocol carries messages from \qquad , \qquad , and \qquad protocols as well as the data coming from application layer.	2, 3	CO4

SECTION B

Note: Answers in this section are to be scanned and uploaded. Each question will carry 10 marks.

Q 7	(a) A ciphertext "QTKM" has been generated by the Affine cipher using the key pair $(15,2)$ in \mathbf{Z}_{26} space. In the key pair $\left(\mathrm{K}_{1}, \mathrm{~K}_{2}\right), \mathrm{K}_{1}$ is the multiplicative key and K_{2} is the additive key. Illustrate the decryption procedure. (b) Justify that the Vigenere' cipher is a polyalphabetic substitution cipher.	6,4	CO1
Q 8	(a) Draw and discuss the structure of a single typical Feistel round. Does AES follow Feistel structure? (b) Compare Cipher Feedback (CFB), and Counter (CTR) modes of block cipher operation on the basis of: (i) Parallel processing capability (ii) Preprocessing of the encryption part (iii) Error propagation (iv) Usage as a stream cipher	6, 4	CO2
Q 9	(a) List all the transformations performed in a typical AES round with a brief description of each. Which of the listed operations is skipped in the last AES round? (b) Multiply $x^{3}+x^{2}+x+1$ by $x^{3}+1$. Use $x^{4}+x^{3}+1$ as modulus.	6, 4	CO2
Q 10	(a) Are Modification Detection Code (MDC) and Message Authentication Code (MAC) same? Justify your argument. Brief the requirements for a hash function. (b) The procedure to generate a simple hash function based on bit by bit exclusive-OR (XOR) defined as: - Divide the input message into equal sized blocks of n-bits each. - Initially set n-bit hash value to zero. - Process each successive n -bit block as follows: - Rotate the current hash value to the left (circular) by one bit. - XOR the block into the hash value Find an 8-bit hash code using this algorithm if the message obtained in the Hex format is 102 F 1 B 08 . Justify whether the hash code so generated is preimage resistant.	6, 4	CO3
Q 11	(a) Define IPSec. Distinguish between the two modes of IPSec. (b) Discuss briefly the malicious software.	6,4	CO4
	OR		
	(a) State the types of intruders. Brief intrusion detection and its mechanisms. (b) Explain the concept of firewalls.	6,4	CO4

SECTION C

Note: Answers in this section are to be scanned and uploaded. Each question will carry 20 marks.

Q 12	(a) Define KDC. Discuss a protocol that involves KDC for the distribution of session keys within the communicating parties. (b) Explain the procedure to generate the session key in Diffie-Hellman key exchange algorithm. (c) In a Diffie-Hellman system, prime number p and its primitive root g are selected as 23 and 7 respectively. Further, Alice and Bob decide their private keys as 3 and 6, respectively. (i) Find the secret shared key. (ii) Show that 7 is primitive root of 23.	CO3	
	(a) Define password salting and explain the procedure of password salting. Other than fixed passwords, name two other mechanisms for entity authentication. (b) State RSA encryption and decryption as a trap-door one-way function. Explain the key generation process in RSA.	$\mathbf{7 , 5}$	$\mathbf{C O 3}$
(c) Perform encryption and decryption using RSA algorithm with input parameters given as			
$p=3, q=11, e=7$, and $M=5$.			

