Name: Enrolment No:			
Cou Prog Cou Inst	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, December 2020 Semester: VII e: Advanced Computer Graphics Sime: 03 hrs. e Code: CSGG 4002 spl. in Graphics \& Gaming ctions: Attempt all questions. There are internal choices in Q. No. 11 and 12.		
SECTION A Note: Answers in this section are to be typed in and each question will carry $\mathbf{5}$ marks.			
Q 1	An OpenGL function call is made as $\operatorname{glOrtho}(-3.2,3.2,-2.4,2.4,1,50)$. Convey the purpose of the function call and specify meaning of the arguments.	5	CO1
Q 2	State Euler's formula for verifying a simple polyhedron. Specify the meaning of each parameter in the formula.	5	CO2
Q 3	Consider a camera with eye point set at $(4,4,4)$ that looks down on a point $(0,1,0)$. If an upward point is guessed as $(0,1,0)$, vectors u, v, and n are computed as \qquad \qquad , and \qquad , respectively. Give an OpenGL function call to make the above stated viewing arrangement.	5	CO2
Q 4	Consider a polygon with vertices $\mathrm{A}(6,1,4), \mathrm{B}(7,0,9)$, and $\mathrm{C}(1,1,2)$. The normal to this polygon using Newell's method is \qquad	5	CO 3
Q 5	(a) The colour of an object is largely determined by its diffuse reflection coefficient. Given $K_{\mathbf{d}}=(0.8,0.4,0)$ if incident light is blue, the color of the object is \qquad (b) Amount of diffused reflection is given as $I_{\mathrm{s}}=I_{\mathrm{s}} K_{\mathrm{d}} \cos (\theta)$. Here, θ is the angle between \qquad and \qquad -.	3,2	CO3
Q 6	List two OpenGL texture mapping functions with their two lines description.	5	CO4
SECTION B Note: Answers in this section are to be scanned and uploaded. Each question will carry $\mathbf{1 0}$ marks.			
Q 7	(a) Express the sequence of steps to rotate a 3D primitive about an arbitrary axis. Give the OpenGL syntax to perform 3D rotation. (b) Derive an expression to map world window coordinates to viewport coordinates.	6,4	CO1
Q 8	(a) Explain perspective projection with diagram. Discuss about vanishing points. (b) Differentiate between cavalier and cabinet parallel projections.	6, 4	CO 2

Q 9	(a) Draw and explain a general 3D viewing pipeline. (b) Define a canonical view volume.	6, 4	CO2
Q 10	(a) List various methods of modeling solids. Explain sweep representation technique for modeling a sphere. (b) In addition to Euler's formula, state the additional constraints for qualifying the definition of a polyhedron.	6, 4	CO3
Q 11	(a) Explain Gouraud shading. Discuss how Phong shading differs from it. (b) Discuss specular reflection of light on an object surface.	5,5	CO3
	OR		
	(a) Discuss the effect of distance between light source and object on diffuse reflection. (b) What is the impact of exponent \boldsymbol{m} in the specular component of Phong model? Explain.	5,5	CO3
SECTION C Note: Answers in this section are to be scanned and uploaded. Each question will carry 20 marks.			
Q 12	(a) Discuss how to apply a texture on a planar surface. (b) Explain programmable shaders in OpenGL. (c) Explain Ray Tracing algorithm with neat diagram.	6, 6, 8	CO4
	OR		
	(a) Discuss OpenGL surface texture and volume texture functions. (b) Explain bump mapping. (c) Explain the concept of Radiosity with neat diagram.	6, 6, 8	CO4

