

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, December 2020 **Course: Advanced Computer Graphics** Semester: VII **Programme:** B.Tech. (CSE) spl. in Graphics & Gaming Time: 03 hrs. Course Code: CSGG 4002 Max. Marks: 100 **Instructions:** Attempt all questions. There are internal choices in Q. No. 11 and 12. SECTION A Note: Answers in this section are to be typed in and each question will carry 5 marks. An OpenGL function call is made as glOrtho(-3.2, 3.2, -2.4, 2.4, 1, 50). Convey the Q 1 5 **CO1** purpose of the function call and specify meaning of the arguments. State Euler's formula for verifying a simple polyhedron. Specify the meaning of each Q 2 5 CO₂ parameter in the formula. Consider a camera with eye point set at (4, 4, 4) that looks down on a point (0, 1, 0). If Q 3 5 CO₂ an upward point is guessed as (0, 1, 0), vectors u, v, and n are computed as _____, _____, and _____, respectively. Give an OpenGL function call to make the above stated viewing arrangement. Consider a polygon with vertices A(6, 1, 4), B(7, 0, 9), and C(1, 1, 2). The normal to 5 **CO3** O 4 this polygon using Newell's method is _____ (a) The colour of an object is largely determined by its diffuse reflection coefficient. Q 5 3, 2 **CO3** Given $K_d = (0.8, 0.4, 0)$ if incident light is blue, the color of the object is (b) Amount of diffused reflection is given as $I_s = I_s K_d \cos(\theta)$. Here, θ is the angle between _____ and ____. Q 6 List two OpenGL texture mapping functions with their two lines description. 5 **CO4 SECTION B** Note: Answers in this section are to be scanned and uploaded. Each question will carry 10 marks. Q 7 (a) Express the sequence of steps to rotate a 3D primitive about an arbitrary axis. Give 6, 4 **CO1** the OpenGL syntax to perform 3D rotation. (b) Derive an expression to map world window coordinates to viewport coordinates. (a) Explain perspective projection with diagram. Discuss about vanishing points. CO₂ Q8 6, 4 (b) Differentiate between cavalier and cabinet parallel projections.

Q 9	(a) Draw and explain a general 3D viewing pipeline.	6, 4	CO2
	(b) Define a canonical view volume.		
Q 10	(a) List various methods of modeling solids. Explain sweep representation technique for modeling a sphere.	6, 4	CO3
	(b) In addition to Euler's formula, state the additional constraints for qualifying the definition of a polyhedron.		
Q 11	(a) Explain Gouraud shading. Discuss how Phong shading differs from it.	5, 5	CO3
	(b) Discuss specular reflection of light on an object surface.		
	OR		
	(a) Discuss the effect of distance between light source and object on diffuse reflection.	5, 5	CO3
	(b) What is the impact of exponent <i>m</i> in the specular component of Phong model? Explain.		
Note:	SECTION C Answers in this section are to be scanned and uploaded. Each question will carry 20	marks.	
Q 12	(a) Discuss how to apply a texture on a planar surface.	6, 6, 8	CO4
	(b) Explain programmable shaders in OpenGL.		
	(c) Explain Ray Tracing algorithm with neat diagram.		
	OR		
	(a) Discuss OpenGL surface texture and volume texture functions.	6, 6, 8	CO4
	(b) Explain bump mapping.		
	(c) Explain the concept of Radiosity with neat diagram.		