Name: Enrolment No:		
Cours Progra Cours	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, Dec 2020 Formal Languages and Automata Theory Semes m: B.Tech-CSE-All program Code: CSEG 3004	
SECTION A 1. Each question will carry 5 Marks. 2. Instructions: Complete the statement / Select the correct answer(s)		
S. No.	Question	CO
Q 1	Predict the minimum number of state required in construction of a FA that accepts strings containing exactly 1 over input alphabet $\{0,1\}$.	CO1
Q2	Write the regular expression over alphabet ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) containing atleast one a , atleast one b and atleast one c.	CO2
Q3	Consider a grammar $\mathrm{G}=\{\{\mathrm{S}\},\{0,1\}, \mathrm{P}, \mathrm{~S}\}$ Where elements of P are: $\begin{aligned} & S-S S \\ & S-0 S 1 \\ & S-1 S 0 \\ & S-E \end{aligned}$ The above grammar will generate \qquad type of language.	CO1
Q4	Analyze the given mealy machine and recognize the output string generated through it.	$\mathrm{CO2}$
Q5	Find the solution of following instance of PCP. $\binom{\text { abab }}{\text { ababaaa }}\binom{\text { aaabbb }}{\text { bb }}\binom{\text { aab }}{\text { baab }}\binom{\text { ba }}{\text { baa }}\binom{\text { ab }}{\text { ba }}\binom{\text { aa }}{\text { a }}$	CO4
Q6	For the given language $L=\left\{0^{\mathbf{n}} 1^{\mathbf{m}} \mid \mathrm{n}<=\mathrm{m}\right\}$ using pumping lemma concept, generate the string which doesn't exist in L.	CO2

SECTION B

1. Each question will carry 10 Marks with internal choice wherever applicable.
2. Instruction: Write short / brief notes.

Q7	Prove that the language $\mathrm{L}=\left\{\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{n}}\right.$ for $\left.\mathrm{n}=0,1,2,3, \ldots \ldots\right\}$ is not regular.	CO2
Q8	Convert the following grammar G into Greibach Normal Form (GNF). $\begin{aligned} & \mathrm{S} \rightarrow \mathrm{XA} \mid \mathrm{BB} \\ & \mathrm{~B} \rightarrow \mathrm{~b} \mid \mathrm{SB} \\ & \mathrm{X} \rightarrow \mathrm{~b} \\ & \mathrm{~A} \rightarrow \mathrm{a} \end{aligned}$	CO 3
Q9	Find out a regular expression for given transition function of a Finite Automaton where q 1 is initial state and q 4 is final state. $\begin{aligned} & (q 1,0)-q 1 \\ & (q 1,1)-q 2 \\ & (q 2,0)-q 3 \\ & (q 2,1)-q 2 \\ & (q 3,0)-q 1 \\ & (q 3,1)-q 4 \\ & (q 4,0)-q 1 \\ & (q 4,1)-q 2 \end{aligned}$	CO 2
Q10	Construct a mealy machine which calculate residue mod - 4 for each binary string treated as binary. Further also convert your constructed mealy machine into moore machine. OR Explain the Myhill-Nerode Theorem. Apply the theorem to minimize the following given DFA.	CO 2

Q11	Design a Turing machine which computes the following function. $F(S)=S S^{R}$, where S^{R} is the reverse of string S. (S belongs to (a,b)*).	CO4
1. Each Question carries 20 Marks. 2. Instruction: Write long answer.		
Q12	Explain the concept of CNF and also consider the following grammar G and write its equivalent CNF $S \text { - ABAC }$ A - aA/E $\mathrm{B}-\mathrm{bB} / \in$ C - c Write step by step process of conversion and also explain the difference between CFG and CNF grammars. OR Write transition rules for a PDA corresponding to the following $\mathrm{L}=\{\mathrm{x} \mid \mathrm{x} \in$ $(\mathrm{a}, \mathrm{b})^{*}$ and $\left.\mathrm{n}_{\mathrm{a}}(\mathrm{x})=\mathrm{n}_{\mathrm{b}}(\mathrm{x})\right\}$ and show the processing of one valid and one invalid string	$\mathrm{CO3}$

