Name: Enrolment No:		
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES END Semester Examinations (Online Mode), Dec 2020 Course: Discrete Mathematical Structures Semester: III Program: B.Tech. (SOCS All Branches) Time: 03 Hrs Course Code: CSEG 2006 Max. Marks: 100		
1. Each question carries 5 Marks. 2. Instruction: Select the correct option.		
Q 1	If the relation $R=\{(i, j):\|i-j\|=2\}$ is defined on the set $A=\{1,2,3,4,5,6\}$, then R is A. reflexive B. symmetric C. transitive D. reflexive and symmetric	CO1
Q 2	If the function $f: R \rightarrow R$ is defined as $f(x)=\left\{\begin{array}{cc}3 x-4 & x>0 \\ -3 x+2 & x \leq 0\end{array}\right.$. Then $f^{-1}(2)$ is A. $\{0,2\}$ B. $\{0,1\}$ C. $\{1,2\}$ D. φ	CO1
Q 3	If a graph has four vertices of degree $1,1,2$ and 3 then the graph is A. simple graph B. multigraph C. pseudo graph D. not possible.	CO3
Q 4	Which one is an Eulerian as well as Hamiltonian graph A. $\mathrm{K}_{5,5}$ B. $\mathrm{K}_{4,5}$ C. K4,4 D. $\mathrm{K}_{5,4}$	CO3
Q 5	The number of edges and number of vertices in N -cube graph $\left(\mathrm{Q}_{4}\right)$ are A. 32 and 16 , respectively. B. 16 and 16 , respectively. C. 16 and 32 , respectively. D. 32 and 32 , respectively.	CO3
Q 6	A tree has two vertices of degree 2, one vertex of degree 3 and three vertices of degree 4 . How many vertices of degree 1 does it have? A. 4 B. 5 C. 6 D. 9	CO4
SECTION - B $10 \times 5=50 \text { Marks }$ 1. Each question carries 10 marks. 2. Instruction: Answer on a separate white sheet, upload the solution as an image.		
Q 7	Determine the solution of the recurrence relation $y_{n}-2 y_{n-1}+y_{n-2}=n .2^{n}$ with $a_{0}=0$ and $a_{1}=1$.	CO1
Q 8	If $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is the linear transformation defined by $T(x, y, z)=(3 x+2 y-4 z, x-5 y+$ $3 z$), then determine the matrix of T relative to the bases $B_{1}=\{(1,1,1),(1,1,0),(1,0,0)\}$, $B_{2}=\{(1,3),(2,5)\}$.	CO2
Q 9	Check whether the following graphs are isomorphic or not. G H	CO3

Q10	Using Prim's algorithm, determine a minimal spanning tree for the given weighted graph.	CO4
Q 11	Determine the maximum flow of the network as shown below using Ford-Fulkerson algorithm and the cut with capacity equal to this maximum flow.	CO4
Section $-C$ 1. Each question carries 20 Marks. 2. Instruction: Answer on a separate white sheet, upload the solution as an image. $\quad 1 \times 20=20$ Marks		
Q 12	Describe the Dijkstra's algorithm. Using this algorithm, determine the length of the shortest path and hence the shortest path in the graph as shown below from a to z. OR Using the decomposition theorem, determine the chromatic polynomial, and hence the chromatic number of the graph as shown below.	CO 3

