Name:

**Enrolment No:** 



## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

**END Semester Examinations (Online Mode), Dec 2020** 

**Course:** Discrete Mathematical Structures **Program:** B.Tech. (SOCS All Branches)

Course Code: CSEG 2006

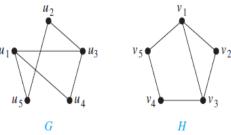
**Semester:** III **Time:** 03 Hrs

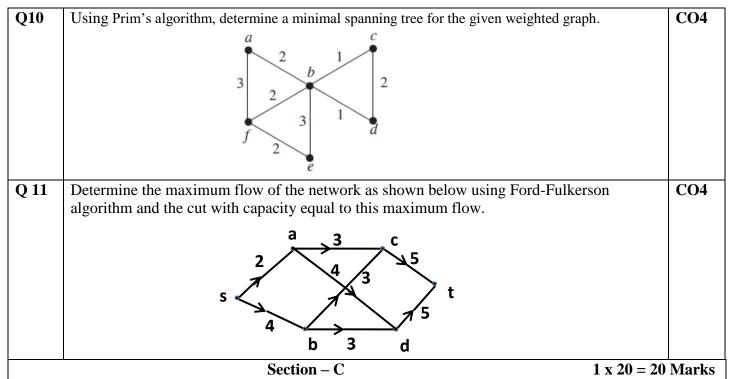
Max. Marks: 100

## **SECTION - A**

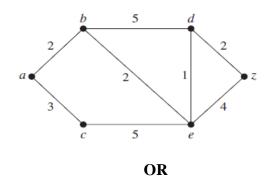
 $6 \times 5 = 30$  Marks

- 1. Each question carries 5 Marks.
- 2. Instruction: Select the correct option.


| Q1  | If the relation $R = \{(i,j):  i-j  = 2\}$ is defined on the set $A = \{1,2,3,4,5,6\}$ , then $R$ is <b>A.</b> reflexive <b>B.</b> symmetric <b>C.</b> transitive <b>D.</b> reflexive and symmetric                          | CO1 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Q 2 | If the function $f: R \to R$ is defined as $f(x) = \begin{cases} 3x - 4 & x > 0 \\ -3x + 2 & x \le 0 \end{cases}$ . Then $f^{-1}(2)$ is <b>A.</b> $\{0,2\}$ <b>B.</b> $\{0,1\}$ <b>C.</b> $\{1,2\}$ <b>D.</b> $\varphi$      | CO1 |
| Q 3 | If a graph has four vertices of degree 1, 1, 2 and 3 then the graph is <b>A.</b> simple graph <b>B.</b> multigraph <b>C.</b> pseudo graph <b>D.</b> not possible.                                                            | CO3 |
| Q 4 | Which one is an Eulerian as well as Hamiltonian graph <b>A.</b> K <sub>5,5</sub> <b>B.</b> K <sub>4,5</sub> <b>C.</b> K <sub>4,4</sub> <b>D.</b> K <sub>5,4</sub>                                                            | CO3 |
| Q 5 | The number of edges and number of vertices in N-cube graph (Q <sub>4</sub> ) are <b>A.</b> 32 and 16, respectively. <b>B.</b> 16 and 16, respectively. <b>C.</b> 16 and 32, respectively. <b>D.</b> 32 and 32, respectively. | CO3 |
| Q 6 | A tree has two vertices of degree 2, one vertex of degree 3 and three vertices of degree 4. How many vertices of degree 1 does it have?                                                                                      | CO4 |
|     | <b>A.</b> 4 <b>B.</b> 5 <b>C.</b> 6 <b>D.</b> 9                                                                                                                                                                              |     |

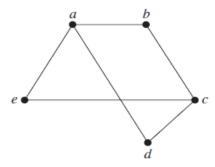

**SECTION - B** 

 $10 \times 5 = 50 \text{ Marks}$ 


- 1. Each question carries 10 marks.
- 2. Instruction: Answer on a separate white sheet, upload the solution as an image.

| Q 7 | Determine the solution of the recurrence relation $y_n - 2y_{n-1} + y_{n-2} = n$ . $2^n$ with $a_0 = 0$ and $a_1 = 1$ .                                                                                                                              | CO1 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Q 8 | If $T: \mathbb{R}^3 \to \mathbb{R}^2$ is the linear transformation defined by $T(x, y, z) = (3x + 2y - 4z, x - 5y + 3z)$ , then determine the matrix of $T$ relative to the bases $B_1 = \{(1,1,1), (1,1,0), (1,0,0)\}$ , $B_2 = \{(1,3), (2,5)\}$ . | CO2 |
| Q 9 | Check whether the following graphs are isomorphic or not.                                                                                                                                                                                            | CO3 |
|     | $u_2$ $v_1$                                                                                                                                                                                                                                          |     |






- 1. Each question carries 20 Marks.
- 2. Instruction: Answer on a separate white sheet, upload the solution as an image.
- Q 12 Describe the Dijkstra's algorithm. Using this algorithm, determine the length of the shortest path and hence the shortest path in the graph as shown below from *a* to *z*.



**CO3** 

Using the decomposition theorem, determine the chromatic polynomial, and hence the chromatic number of the graph as shown below.

