Name:						
Enrolm	ent No:	UNIVERSITY WITH A PURPOSE				
		ROLEUM AND ENERGY STUDIES				
	Advanced Database Management Syste n: B.Tech. Computer Science+ CL/IPR					
Course Instruct	Code: CSEG 2005 ions:	Max. Marks: 1	Max. Marks: 100			
	Q	SECTION A				
S. No.		p 'R'. 'a1' and 'b1' are the primary keys for elations created for the following relationship	Marks			
Q 1	a1 a2 A 1	R B B	5	CO1		
Q2		R 1 B	5	CO1		
Q3	a1 a2 M	R N B	5	CO1		
Q4	a1 a2 A	R B Total participation and minimum cardinality=1	5	C01		
	Considering the wait for graph in Q-5 and state of deadlock or not. Give reason.	d Q-6 detect whether the system will be in				

Q5					5	CO4	
Q6						5	CO4
				SECTIO			1
Q 7	Explain the advantages and disadvantages of using a static hash file with buckets and chaining.				^{id} 10	CO2	
Q 8	Describe the atomicity, durability, isolation, and consistency preservation properties of a database transaction.				s of 10	CO3	
Q 9	Give an account of problems that occur when concurrent execution is uncontrolled.				10	CO4	
Q 10	La b. Fi	Data Type Character Character Character Date Number Character character eries consid reate an inder ast_Name, D	x of nam epartmer ID for th	e employee_ nt_id . e above tabl	table: idx on EMPLOYEES with colun e and create a unique index on	10	CO2

Q10	Write the SQL queries considering the employees relation above:		
	a. Create a unique and composite index on employee_id and check whether there is duplicity of tuples or not.		
	b. Create Function-based indexes defined on the SQL functions		
	UPPER(column_name) or LOWER(column_name) to facilitate case-		
	insensitive searches(on column Last_Name)		
Q11	Consider the transactions T1, T2, and T3 and the schedules S1 and S2 given below. T1: r1(X); r1(Z); w1(X); w1(Z)		
	T2: $r2(Y)$; $r2(Z)$; $w2(Z)$		
	T3: r3(Y); r3(X); w3(Y)		
	S1: r1(X); r3(Y); r3(X); r2(Y); r2(Z);		
	w3(Y); w2(Z); r1(Z); w1(X); w1(Z)	10	CO3
	S2: r1(X); r3(Y); r2(Y); r3(X); r1(Z);		
	r2(Z); w3(Y); w1(X); w2(Z); w1(Z)		
	Make a precedence graph for S1 and S2 and check whether the schedules are conflict serializable.		
	SECTION-C		
Q12	With reference to distributed database, discuss the steps 1-7.		
	Distributed/ data repository	20	CO5
	OR		
Q12	Explain the significance of fragmentation in relation of Distributed database. Also,		
	specify its types.		