Name:

Enrolment No:

Semester

Max. Marks: 100

Time

: III

:03 Hours

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES School of Computer Science

End Semester Examination, December 2020

Course : D	Pata Mining & Prediction by Machines
Program : B	B. Tech CSE AIML
Course Code	: CSAI 2005
Instructions	:

SECTION A

		Marks	
Q1	Why data mining is in high demand and what kind of data can be mined?	05	CO1
Q2	What is the difference between classification and regression? Why data classification is known as a two-step process?	05	CO3
Q3	 Given two objects represented by the tuples (22, 1, 42,10) and (20, 0, 36, 8): a) Compute the Euclidian distance between the two objects. b) Compute the Manhattan distance between the two objects. 	05	CO2
Q4	What are the different methods of measuring central tendency of data set?	05	CO2
Q5	How bagging method can be useful to improve the accuracy of classification machine models?	05	CO3
Q6	Give an application example of where the border between normal objects and outliers is often unclear, so that the degree to which an object is an outlier has to be well estimated.	05	CO4
	SECTION B		
Q7	 Suppose that the data mining task is to cluster the following eight points (with (x, y) representing location into three clusters: A1(2, 10), A2(2, 5), A3(8, 4), B1(5, 8), B2(7, 5), B3(6, 4), C1(1, 2), C2(4, 9): The distance function is Euclidean distance. Suppose initially we assign A1, B1, and C1 as the center of each cluster, respectively. a) Write down k-means algorithm b) Use k-means algorithm for the three cluster centers after the first round execution c) Find the final three clusters 	4+4+2 =10	CO4

Q8	What do v	ou mean by Pro	cess Stand	ardization	n? Brief	ly explain	the CRIS	P-DM	4.0	001
ς-	phases and	-			·	J			10	CO1
Q9	Explain KNN algorithm. Why it is also called Lazy Learner? What are the points to be subjected when choosing the value of k? For the below problem predict for the class of Davis using KNN and assume the value of k=3.									
		Custo	omer Age	Income (K)	No. of cards	Response]			
		John	35	35	3	Yes	1			
		Rache	el 22	50	2	No			10	
		Ruth	63	200	1	No				CO3
		Tom	59	170	1	No	-			
		Neil	25	40	4	Yes	1			
		David	37	50	2	?				
	people. Fol	lowing is the conf	-	ix for the s	same. Predict	ed		onsists of 100		
	people. Fol	lowing is the cont	fusion matr	ix for the s	same. Predict	ed Positive				
	people. Fol	lowing is the conf	fusion matr	ix for the s	same. Predict	Positive			10	CO4
		lowing is the cont	fusion matr	ix for the s	same. Predict	ed Positive			10	CO4
	Actual	lowing is the conf	fusion matr	ix for the s Negati 60 8	same. Predict	Positive			10	CO4
	Actual Calculate th	Negativ Positive	fusion matr	ix for the s Negative 60 8 meters : Jegative	Same. Predict ve 3. Fal 6. Re	Positive 22 10 se Positive	e		10	CO4
Q11	Actual Calculate th 1. 4. 7.	Negativ Negativ Positive ne following evalu True positive False Negative	re uation para 2. True N 5. Precisi 8. F1 Sco	ix for the s Negative 60 8 neters : Vegative ion ore	3. Fal 6. Re 9. Ser	red Positive 22 10 se Positive scall asitivity	e 10. Speci		10	CO4
Q11	Actual Calculate th 1. 4. 7.	Negativ Negativ Positive ne following evalu True positive False Negative Accuracy	re uation para 2. True N 5. Precisi 8. F1 Sco	ix for the s Negative 60 8 neters : Vegative ion ore	3. Fal 6. Re 9. Ser	red Positive 22 10 se Positive scall asitivity	e 10. Speci		10	CO4
Q11	Actual Calculate th 1. 4. 7. For a given	Negativ Negativ Positive ne following evalu True positive False Negative Accuracy	fusion matr re uation paran 2. True N 5. Precisi 8. F1 Sco ute dissimi	ix for the s Negative 60 8 neters : Negative on ore larity bety	3. Fal 6. Re 9. Ser	Positive 22 10 se Positive call nsitivity 20 binary a	e 10. Speci ttributes.	ficity	10	CO4
Q11	Actual Calculate th 1. 4. 7. For a given Name	Negativ Positive ne following evalu True positive False Negative Accuracy n data set compu	fusion matr re uation paran 2. True N 5. Precisi 8. F1 Sco ute dissimi T2	ix for the s Negativ 60 8 meters : Negative on Dre larity betv T3	3. Fal 6. Re 9. Ser	Positive 22 10 se Positive call sitivity vo binary a T4	e 10. Speci ttributes. T5	ficity T6	10	
Q11	Actual Calculate th 1. 4. 7. For a given Name A	Negativ Positive re following evalu True positive False Negative Accuracy n data set compu	fusion matr re uation paran 2. True N 5. Precisi 8. F1 Sco ute dissimi T2 0	ix for the s Negative 60 8 neters : Vegative for bre larity betw T3 1	3. Fal 6. Re 9. Ser	red Positive 22 10 se Positive call nsitivity ro binary a T4 0	e 10. Speci ttributes. T5 0	ficity T6 0		CO4

suitabi	e examp	105.						
				Section C				
a) b)	 Consider the data as two-dimensional data points. Given a new data point, x= (1.4,1.6) as a query, rank the database points based on similarity with the query using Euclidean distance, Manhattan distance, Minkowski distance. Following dataset is used to learn a decision tree which predicts if a student passed data mining and prediction by machine (Yes or No), based on their previous GPA (High, Medium, or Low) and whether or not they studied. Draw the decision tree for the same. Also, show the calculations regarding entropy and information gain. 							
	GPA		Studie	d	Passed			
	Low		False		No			
	Low		True		Yes			
	Mediu	m	False		No			
	Mediu	m	True		Yes			
	High		False		Yes			
	High		True		Yes		20	СО
				Or				
follow						cision tree of the formation Gain) Diagnosis		
follow: Sore Yes	ing data	set using II Fever Yes	D3 algorithm. Swollen Glands Yes	(based on the Congestio n Yes	parameter <i>Inj</i> Headache Yes	formation Gain) Diagnosis Strep throat		
follow: Sore Yes No	ing data	set using II Fever Yes No	D3 algorithm. Swollen Glands Yes No	(based on the Congestio nYesYes	Parameter Inj Headache Yes Yes	formation Gain) Diagnosis Strep throat Allergy		
follow: Sore Yes No Yes	ing data	set using II Fever Yes No Yes	D3 algorithm.SwollenGlandsYesNoNo	(based on theCongestionYesYesYesYes	Parameter InjHeadacheYesYesNo	formation Gain) Diagnosis Strep throat Allergy Cold		
follow: Sore Yes No Yes Yes	ing data	set using II Fever Yes No Yes No	D3 algorithm.SwollenGlandsYesNoNoYes	(based on theCongestionYesYesYesYesNo	Parameter InjHeadacheYesYesNoNo	formation Gain) Diagnosis Strep throat Allergy Cold Strep throat		
follow: Sore Yes No Yes No	ing data	set using II Fever Yes No Yes No Yes	D3 algorithm.SwollenGlandsYesNoNoYesNoYesNo	(based on theCongestionYesYesYesYesNoYes	Parameter InjHeadacheYesYesNoNoNoNo	formation Gain) Diagnosis Strep throat Allergy Cold Strep throat Cold		
follow: Sore Yes No Yes No No	ing data	set using II Fever Yes No Yes No Yes No	D3 algorithm.SwollenGlandsYesNoNoYesNoNoNoNoNoNo	(based on theCongestionYesYesYesYesNoYesYesYes	YesYesNoNoNoNoNoNoNo	formation Gain) Diagnosis Strep throat Allergy Cold Strep throat Cold Allergy		
follow: Sore Yes No Yes No No No	ing data	set using II Fever Yes No Yes No Yes No No	D3 algorithm.SwollenGlandsYesNoNoYesNoNoNoNoNoYesNoYes	(based on theCongestionYesYesYesNoYesYesYesNoYesNoNo	Parameter InjHeadacheYesYesNoNoNoNoNoNoNoNoNo	formation Gain) Diagnosis Strep throat Allergy Cold Strep throat Cold Allergy Strep throat		
follow: Sore Yes No Yes No No No Yes	ing data	set using II Fever Yes No Yes No Yes No No No	D3 algorithm.SwollenGlandsYesNoNoYesNoNoYesNoYesNoYesNoYesNo	(based on theCongestionYesYesYesYesNoYesYesNoYesNoYesNoYesNoYesNoYes	YesYesYesNoNoNoNoNoNoNoYes	formation Gain) Diagnosis Strep throat Allergy Cold Strep throat Cold Allergy Strep throat Allergy		
follow: Sore Yes No Yes No No No	ing data	set using II Fever Yes No Yes No Yes No No	D3 algorithm.SwollenGlandsYesNoNoYesNoNoNoNoNoYesNoYes	(based on theCongestionYesYesYesNoYesYesYesNoYesNoNo	Parameter InjHeadacheYesYesNoNoNoNoNoNoNoNoNo	formation Gain) Diagnosis Strep throat Allergy Cold Strep throat Cold Allergy Strep throat		