Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, May 2020

Course: Supply Chain Analytics
Program: MBA LSCM (III)
Semester: III
Time: 03 hrs.

Course code: LSCM 8020 Max. Marks: 100

SECTION A

1. Each Question will carry 5 Marks

2. Instruction: Complete the statement / Select the correct answer(s)

S.No	Question	СО
Q 1	In R programming, the test for normality of a continuous variable can be done by using	CO1
	function and its p-value should be	COI
Q 2	a) Spearman's and Kendall's correlation coefficients are non-parametric alternatives	
	to Pearson's correlation coefficient. (TRUE/FALSE)	CO2
	b) is the symbol for Spearman's rank correlation in R.	
Q 3	Reliability analysis for a factor can be calculated in R using function through	
	the package. The range of alpha value is from to The	CO3
	reliability analysis can also be analyzed using SPSS stands for	
Q 4	reliability analysis can also be analyzed using SPSS stands for Which of the following is <i>NOT</i> an assumptions of Linear Discriminant Analysis (LDA)?	
	a) Homogeneity of variance	
	b) Univariate normality	CO3
	c) Data should be measured on a ratio or interval scale	
	d) Data should not contain outliers	
	e) Low value of Wilk's Lambda shows significance level	
Q 5	uses block chain technology as its transaction ledger.	
	a) Bitcoin	
	b) Cryptocurrencies	
	c) Artificial Intelligence	CO4
	d) Machine Learning	
	e) Cryptography	
	f) Security Technologies	
Q 6	IDIC Model indicates and CPFR stands for	CO4
	SECTION B	
1.	Each question will carry 10 marks	
2.	Instruction: Write short / brief notes	
Q 7	How supply chain using analytics to solve the problem? List down the software used for	
	supply chain analytics.	
	OR	CO1
	What is big supply chain analytics? Explain five C's of the effective supply chain	
	analytics.	

Q 8	How does prescriptive analytics work? How to use prescriptive analytics in various								
	industries like healthcare, oil & gas, aerospace, consumer goods, chemicals, and retail? Explain in detail.								
	Explain in C	ietaii.		OR		CO2			
	Discuss va	irious parai	meters on	_	sed machine learning differs from				
0.0			earning tech		17 16				
Q 9		gramming, 1	the output for	r Maximum Lik	elihood factor analysis method is given				
	below:								
	Call: KMO	,							
	Overall MSA = 0.78								
	MSA for ea	ch item: var	1 (0.82), var	2 (0.83), var 3	(0.81), var 4 (0.58), var 5 (0.60), var 6				
	(0.82), var 7	7 (0.82), var	8 (0.82), var	9 (0.81)					
	#Bartlette's	Test of Sph	ericity						
	\$chisq								
	[1] 561.223	4							
	\$p.value								
	[1] 1.68132	3e-95							
	\$df								
	[1] 36								
	Parallel analysis suggests that the number of factors = 3 and the number of components =								
	NA				-				
	Factor Anal	ysis using n	nethod = ml						
				e = "oblimin", f	m = "ml")				
	Loadings:	,	,	,	,				
		ML2	ML3	ML1					
	Var 1	0.12	0.817	0.69					
	Var 2	-0.60	0.800	0.59					
	Var 3		0.871	0.74					
		-0.07							
	Var 4	0.01	-0.60	0.770					
	Var 5	0.00	0.00	0.983					
	Var 6	-0.30	0.18	0.418					
	Var 7	0.943	-0.09	0.80					

	Var 8	0.848	0.12	,	0.03					
	Var 9	0.926	0.03		0.88	-				
						_				
			ML2	ML3	ML1					
	SS loadings		2.486	2.125	1.735					
	Proportion	n Variance	0.276	0.236	0.193					
	Cumulativ	ve Variance	0.276	0.512	0.705					
	 a) When many many many many many many many man	rk) e overall MS led as w many redu vn with their w much is th	A value (3 1 aced fact factor lee total p which i	is marks) cors you oading j	and com- have obtain patterns (3 mge of trace f	ed from harks) or reduce analysis	e range of _ the output? ed factors? (nalysis metho to Name and list (1 mark) r making scree	, also them	
Q 10	* ` '							CO3		
Q 11	How suppo	ort vector mayn words. Librines.	achines ist down	help in	solving the			Sample 2 Sample 2 Sample 3 Sam	pport	CO4

Answer the following questions:

- a) What is the name of this figure? (2 marks)
- **b)** Write down the three-cluster solution for both figures. (4 marks)
- c) Write down the steps taken up for Hierarchical cluster analysis using SPSS. (4 marks)

SECTION C

- 1. Each Ouestion carries 20 Marks.
- 2. Instruction: Q12 divided into two parts and carries 10 marks each.
- Q 12 A) Pushpa wants to introduce new coffee maker and wish to assess how consumers evaluate the various attribute levels of the product.

These are:

- 1. Price (Indian Rupees): 5000; 7000; 7500
- 2. Time taken to make coffee (in minutes): 10; 15; 18; 20
- 3. Capacity (in standard cups): 5; 10; 15

Answer the following:

- a) Write down the steps for performing conjoint analysis in SPSS. (5 marks)
- **b)** How many attributes and levels observed? (3 marks)
- c) How many different possible combinations obtained? (2 mark)
- B) SKF, a vendor wants to determine from Berger Paints (customer), how important each attribute is to them. Also, they want to know the utility they derive from a given combination of levels of attributes. SMC thinks that machinery and product are important to the consumer.

These are:

- 1. Machinery setup time: 1 hour; 6 hour; 12 hour; 24 hour
- 2. Machinery Delivery: 7 days; 30 days; 45 days
- 3. Number of products: 2, 4, 7

Using the SPSS output for Conjoint Analysis through Regression Model tables below to answer the following questions:

- a) Name all the VAR1 to VAR7 from the output. (5 marks)
- **b)** Based on output, interpret the results. Also, calculate part utility and range of utilities. (3 marks)
- c) Which gives the best possible combination and least possible combination? (2 marks)

CO3

	Model Summary								
Mo	del	R	R Square	Adjusted R Square	Std. Error of the Estimate				
1		.988	.976	.970	1.837				

ANOVA								
Model		Sum of Squares	df	Mean Square	F	Sig.		
1	Regression	3790.500	7	541.500	160.444	.000		
	Residual	94.500	28	3.375				
	Total	3885.000	35					

Coefficients									
	Unstandardi	zed Coefficients	Standardized Coefficients						
	В	Std. Error	Beta	t	Sig.				
Model									
1 (Consta	nt) 18.500	.306		60.421	.000				
VAR1	6.500	.530	.422	12.257	.000				
VAR2	3.500	.530	.238	6.600	.000				
VAR3	-2.500	.530	170	-4.714	.000				
VAR4	1.000	.433	.079	2.309	.029				
VAR5	.000	.433	.000	.000	1.000				
VAR6	-12.000	.433	943	-27.713	.000				
VAR7	3.750	.433	.295	8.660	.000				