Name: Enrolment No:	UNIVERSITY WITH A PURPOSE

UNIVERSITY OF PETROLEUM \& ENERGY STUDIES

Online End Semester Examination - Dec, 2020

Course: Supply Chain Modeling, Design and Simulation
Subject/: MBA LSCM
Course Code: LSCM8006

Semester: III
Time: 3 Hours
Max. Marks: 100

SECTION A

1. Each Question will carry 5 Marks
2. Instruction: Complete the statement / Select the correct answer(s)

S.No.	Question	COs
Q 1	\qquad problems have applications in communication networks while \qquad problems are used for network of pipelines.	CO1
Q 2	The types of models discussed using AMPL are \qquad \qquad and \qquad _.	CO1
Q 3	Select all the correct statements a. Aggregate planning is type of dynamic programming b. Three jug puzzle is type of shortest route algorithm c. Length of a system in single server model is equal to length of queue +1 d. AMPL is used for solving Linear programming problems	CO1
Q 4	The Kendall's Notation comprise of \qquad , \qquad \qquad \qquad \qquad and \qquad	CO3
Q 5	The two approaches for time advance in simulation are \qquad and \qquad . The elements of discrete event simulation are \qquad \qquad and \qquad	CO 4
Q 6	\qquad property is used to reduce the size of game theoretic problem. point is reached if payoff matrix reduces to single strategy.	CO4

SECTION B

1. Each question will carry 10 marks

2. Instruction: Solve the numerical problems

Q 7	Solve the following stage coach problem using Dynamic Programming. There are 6 nodes and the arcs and distances (in brackets) are given: 1-2(8), 1-3(10), 24(7), 2-5(9), 3-4(4), 3-5(5), 4-6(12), 5-6(8)			CO 2
Q 8	There are two items with the data given below. The restriction on total number of orders is 18 . Find the EOQ value for individual items and total cost.			CO2
		Item 1	Item 2	
	Annual Demand	10000	20000	

	Order Cost	300	300								
	Unit Price	20	25								
	Interest Rate	20\%	25\%								
Q 9	Consider a two person zero sum game with the data given below. Player A has three strategies and player B has three strategies. Solve the problem to get steady state payoff			CO4							
	4	3	-2								
	-1	4	2								
	1	-2	-4								
Q 10	Use the Floyd's Algorithm to find the shortest distance from depot Z to depot A										
Q 11	Cranberry Ltd hour day Find th a) Utilizat b) Averag c) Averag	al rate averag custo me?	4 vans loaded	CO3							
1. Each Question carries 20 Marks. 2. Instruction: Solve any one case study											
Q 12	An outdoors person who lives in New Delhi (ND) wishes to spend a 15-day vacation visiting four national parks:Rajaji (RJ), Jim Corbett (JC), Khirganga (KG), and Gir Forest (GF). The tour, which starts and ends in New Delhi, visits the parks in the order ND->RJ->JC->KG->GF->ND and includes a 2-day stay at each park. Travel from one park location to another is either by air or car. Each leg of the trip takes $1 / 2$ day if traveled by air. Travel by car takes $1 / 2$ day from ND to RJ, 3 days from RJ to JC, one day from JC to KG, 2 days from KG to GF, and 3 days from GF back to ND. The tradeoff is that car travel generally costs less but takes longer. Considering that the individual must return to work in 15 days, the objective is to make the tour as inexpensively as possible within the 15 -day limit. Table below provides the one-way cost of traveling by car and air. Determine the mode of travel on each leg of the tour.										

