Name:

**Enrolment No:** 

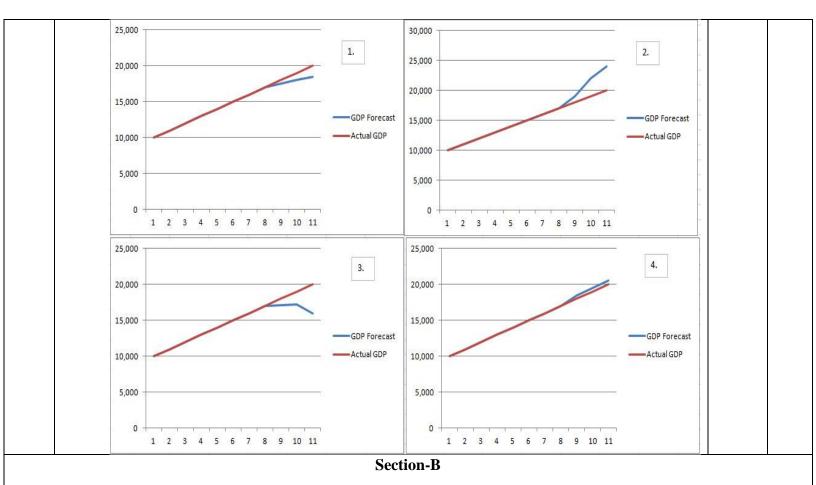


# UNIVERSITY OF PETROLEUM & ENERGY STUDIES

End Semester Examination (Online) – December, 2020

Program: MA(EE)
Subject/Course: Business Modelling in Energy Sector

Course Code: OGET8007


Semester: III Max. Marks: 100 Duration: 3 Hours

## **Section-A**

- 1. Each question will carry 5 marks
- 2. Select the correct answer(s)

| S.No. | Question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Marks | COs     |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|
| 1     | Which of the following are sources of forecast uncertainty? Select all that apply:  A. Error term in the DGP  B. Stochastic exogenous variables  C. An unknown DGP  D. Unknown parameters in the DGP  E. Measurement errors in exogenous variables  F. Model misspecification  G. Poor data quality  H. Poor parameter estimation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5     | CO<br>1 |
| 2     | <b>True or False</b> : In general, the more exogenous variables we must forecast to obtain a forecast for the dependent variable, the greater the uncertainty of our forecast.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5     | CO 2    |
| 3     | Null Hypothesis: LSTOCK_INDEX_FR has a unit root   Experience   Expe | 5     | CO<br>1 |

|   | stationary. C. The null hypother variable is non-st D. I don't know. |                                                                  | rejected at 1, 5 or 10% leve                       | el of significance; the                                      |   |         |
|---|----------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------|---|---------|
|   |                                                                      | Standard error, Mean                                             | question. The options are an squared error, Root M |                                                              |   |         |
|   | Measures of Forecast<br>Accuracy                                     | Equations                                                        | Measures of Forecast<br>Accuracy                   | Equations                                                    |   |         |
| 4 |                                                                      | $\hat{y}_t - y_t$                                                |                                                    | $\sqrt{\frac{1}{f} \sum_{i=1}^{f} FE_t^2}$                   | 5 | СО      |
| 4 |                                                                      | $\frac{1}{f} \sum_{t=1}^{f} FE_{t}$                              |                                                    | $\frac{1}{f} \sum_{i=1}^{f}  FE_i $                          | 3 | 2       |
|   |                                                                      | $\sqrt{\frac{1}{f} \sum_{t=1}^{f} \left( FE_t - BIAS \right)^2}$ |                                                    | $\frac{1}{f} \sum_{i=1}^{f} \left  \frac{FE_t}{y_t} \right $ |   |         |
|   |                                                                      | $\frac{1}{f} \sum_{i=1}^{f} FE_i^2$                              |                                                    |                                                              |   |         |
|   | Which of the following f                                             | forecasts of GDP has th                                          | he smaller error variance?                         | )                                                            |   |         |
|   | GDP ↑                                                                | •                                                                | A                                                  |                                                              |   |         |
|   |                                                                      | }                                                                |                                                    |                                                              |   |         |
| 5 |                                                                      |                                                                  |                                                    | В                                                            | 5 | CO<br>1 |
|   |                                                                      | Т Т                                                              | +1 Time                                            | 3                                                            |   |         |
| 6 | Which of the following g that apply:                                 | graphs display an optin                                          | nistic bias relative to the a                      | actual outcome? Select all                                   | 5 | CO<br>1 |



## 1. Each question will carry 10 marks

#### 2. Instruction: Write short/ brief notes

| 7.  | What are the different test available for stationarity test?                           | 10 | CO 2    |
|-----|----------------------------------------------------------------------------------------|----|---------|
| 8.  | Explain the steps in Forecasting.                                                      | 10 | CO 2    |
| 9.  | What are the different types panel data models?                                        | 10 | CO<br>2 |
| 10. | What is data envelopment analysis? Explain its uses in the energy sector.              | 10 | CO<br>3 |
| 11  | Write the expression for the AR(2) model. Derive Mean and variance of the AR(2) Model. | 10 | CO<br>3 |

### 2. Instruction: Write long answer.

What is ARIMA modelling? Explain whether it can be used for Energy Demand Forecasting.

#### Or

Compare the output of the two models given below. Which model you will prefer and why?

#### Model-1

Dependent Variable: C01 Method: Panel Least Squares Date: 12/09/20 Time: 17:00

Sample: 2000 2014 Periods included: 15 Cross-sections included: 6

Total panel (balanced) observations: 90

| Variable                                                                                                       | Coefficient                                                                       | Std. Error                                                                                            | t-Statistic                                   | Prob.                                                                |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|
| C<br>Q<br>PF<br>LF                                                                                             | 1158559.<br>2026114.<br>1.225348<br>-3065753.                                     | 360592.7<br>61806.95<br>0.103722<br>696327.3                                                          | 3.212930<br>32.78134<br>11.81380<br>-4.402747 | 0.0018<br>0.0000<br>0.0000<br>0.0000                                 |
| R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) | 0.946093<br>0.944213<br>281559.5<br>6.82E+12<br>-1254.988<br>503.1176<br>0.000000 | Mean depende<br>S.D. dependen<br>Akaike info crit<br>Schwarz criteri<br>Hannan-Quinn<br>Durbin-Watson | t var<br>erion<br>on<br>criter.               | 1122524.<br>1192075.<br>27.97750<br>28.08860<br>28.02230<br>0.236118 |

### Model-2

12

Dependent Variable: C01 Method: Panel Least Squares Date: 12/09/20 Time: 17:00

Sample: 2000 2014 Periods included: 15 Cross-sections included: 6

Total panel (balanced) observations: 90

| _ | Variable | Coefficient | Std. Error | t-Statistic | Prob.  |
|---|----------|-------------|------------|-------------|--------|
|   | С        | 1158559.    | 360592.7   | 3.212930    | 0.0018 |
|   | Q        | 2026114.    | 61806.95   | 32.78134    | 0.0000 |
|   | PF       | 1.225348    | 0.103722   | 11.81380    | 0.0000 |
|   | LF       | -3065753.   | 696327.3   | -4.402747   | 0.0000 |
|   |          |             |            |             |        |

20

4

CO

| djusted R-squared 0.944213 S.D. dependent var 1192075. E. of regression 281559.5 Akaike info criterion 27.97750 um squared resid 6.82E+12 Schwarz criterion 28.08860 og likelihood -1254.988 Hannan-Quinn criter. 28.02230 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| um squared resid 6.82E+12 Schwarz criterion 28.08860 og likelihood -1254.988 Hannan-Quinn criter. 28.02230                                                                                                                 |
| og likelihood -1254.988 Hannan-Quinn criter. 28.02230                                                                                                                                                                      |
|                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                            |
| statistic 503.1176 Durbin-Watson stat 0.236118                                                                                                                                                                             |
| rob(F-statistic) 0.000000                                                                                                                                                                                                  |