Enro	lment No:		UNIVERSITY WITH A PURPOSE							
		UNIVERSITY OF PETE								
		End-Semest	EHRADU er Evam							
Prog	ram/course	: MBA OG	CI L'Adili	Semester : II						
Subje		: Econometrics	Max. Marks : 100 Duration : 3 Hrs							
Code		: MBCE 702								
No. o	f page/s	: 4								
		CI	ECTION							
1 Ea	ch Question w	ill carry 5 Marks	ECTION	A						
	-	et the correct answer(s)								
Q1		cs means								
	a.	Statistical measurement	c.	Functional measurement						
	a.	Statistical measurement	C.	i unctional incasurement	[5]	CO1				
	b.	economic measurement	d.	All the above						
Q2	Which of the	e following statements is true con	cerning t	he population regression						
		RF) and sample regression function	•							
		and sample regression rancers	, (SIII) .							
	a.	The PRF is the estimated model								
	u.	The Trains the estimated model								
	b.	The PRF is used to infer likely v	alues of t	he SRF	[5]	CO1				
		Whether the model is good can be	a datarm	inad by comparing the CDE						
	c.	and the PRF	be determ	med by comparing the SKF						
	d.	The PRF is a description of the p	process th	ought to be generating the						
		data.								
Q3	When the on	stimated slop coefficient in the sir	nnle recr	assign model R is zero, then						
	vv nen the es	amawa siop coemicient in the sit	ubie iegi	assion model μ_2 , is zero, men						
	a.	$r^2 = 0$	c.	$0 \le r^2 \le 1$						
		. •		<u> </u>	[5]	CO1				
	b.	$r^2 \leq 1$	d.	$r^2 \le 0$						
İ	0.	/ ≥1	u.	$r \ge 0$						

Q4	$u_i = Y_i - E(Y \mid X_i) \text{ is k}$	nown as			[5]	CO1
		on of an expected Y _i its mean value	c.	deviation of an individual X around its expected value	i	
		on of an individual Y its maximum value	7 _i d.	deviation of an individual Y around its expected value	i	
Q5	If coefficient of determ	nination $r^2 = 1$ for a r	regression m	odel, then		
	a. it is a p	perfect fit model	c.	X = Y	[5]	CO1
	b. $X \leq Y$		d.	E(Y) = E(X)		
Q6	In confidence interval true β with probabili		this means	that this interval includes the		
	a.	5%	c.	105%	[5]	CO1
	b.	95%	d.	100%		
	<u> </u>		SECTION	В		
	ch question will carry 10 truction: Write short / b					
Q7.	Calculate F-value from regression analysis.	n the ANOVA table g	given below	and describe its use in		
		Source	SS	df	[10]	CO2
			5564.44289 487.629289	6 32		CO2
		Total	5052.07218	38		
Q8.	Formulate one Petrole econometric speci					
	Q : Petrol C : Crude K : Capit Z : Land L : Labor	al			[10]	CO2

Q9	Oil consumption import (im); cr	7938423.38 123989.991	df 5 29	_	_	_	= 35 = 371.34 = 0.0000 = 0.9846			
		-3. 834641 .6252913 1236515 .0050046 1.122187 1068. 624		52 -4.43 14 13.39 15 -4.55 67 2.02 24 4.66 15 6.62	0.000 0.000 0.053 0.000 0.000 residual	.5298171 1792438 000061 .6297929 738.6027	-2.06295 .7207655 0680591 .0100701 1.614581 1398.645		[10]	CO2
Q10.	show that Total sum of square (TSS)= ESS+ RSS. (b) Identify R ² and interpret it. (c) Identify intercept of the model and interpret it. In the following multiple regression result, Gas Production – tonnes (Million tonnes oil equivalent) (GP) is estimated using factors such as: • GDP per capita (constant 2010 US\$) (GP), • Domestic credit provided by financial sector (% of GDP) (DCF), • Energy imports, net (% of energy use) (EIM), • Foreign direct investment, net inflows (% of GDP) (FDIP), • Gross capital formation (annual % growth) (GCFR), and									
	Source Model Residual Total GP GDPP DCF	0156572 .0 .4852146 .1	df 6 927 32 15. 38 159 td. Err. 0127679 1718355	MS 7.407148 2384153 9.265057 t -1.23 2.82	P> t 0.229 0.008	Number of obs = F(6, 32) = F(6, 32) = Frob > F = FR-squared = FROOT MSE = FR	= 60.86 = 0.0000 = 0.9194 = 0.9043 = 3.9036 [Interval] .0103502 .8352321		[10]	CO3
	EIM FDIP GCFR IVAR _cons (i) Tes	7732869 1. .0577847 .0 .2376649 .7 -19.63859 4.	3663004 .427769 0779678 2601368 .848213	3. 96 -0. 54 0. 74 0. 91 -4. 05	0.000 0.592 0.464 0.368 0.000		2.195539 2.134983 .2165998 .7675462 -9.763103	1		

Q11.	From the regression result of crude oil production function, p-values are given below. Prepare a table as given below and state at what level independent variables are affecting crude oil production significantly.						V.		
	Crude Oil Production		p > t Write down only Level of Significance] [10]				
	Price of	Crude Oil		0.001		<u> </u>			CO3
	Per Capi	ita GDP		0.002					
	Refinery	Throughputs		0.052					
	Proved I	Reserves of Crude	Oil	0.345					
	Populati	on		0.124					
	Carbon 1	Emission		0.564					
	<u> </u>			Sec	ction C				<u> </u>
	In the following factors such oil content of the period o	carries 20 Marks. ite long answer. ort on the followin wing multiple reg as: onsumption (oc), capita GDP (pgdp) ort of goods and se ort of goods and se	g results: cression re	esult, Ca om), and	rbon En	nission (co2) is	estimated us	ing [20]	CO4
	Source Model Residual	Model 1020938.61 4 255			F(4, 29) = 342.91 4.652 Prob > F = 0.0000 R-squared = 0.9793				
	Total	1042523.99	33 3159	1.6359		Adj R-squared Root MSE	= 0.9764 = 27.282		
	co2	Coef. St	d. Err.	t	P> t	[95% Conf.	Interval]		
	oc pgdp om ox _cons	0136371 .0 .014613 .0 0092261 .0	0144843 0045878 0102785 0176469 00.1929	9.03 -2.97 1.42 -0.52 1.73	0.000 0.006 0.166 0.605 0.094	.1012106 0230202 0064089 0453181 -53.64647	.1604579 0042539 .0356349 .0268659 642.5206		