Name:

Enrolment No:

UNIVERSITY OF PETROLEUM & ENERGY STUDIES **DEHRADUN**

End-Semester Examination, May 2020

Program/course : MA Economics (EE) Semester : IV : Energy and Climate Change Subject : 100 Max. Marks : OGET 8008 Code **Duration** : 3 Hrs

		1		
	SECTION A Answer Q1 and any four from the remaining questions	5 X 6 = 30		
Q1.	Write short notes on the following: a. Global warming b. INDC c. COP 26	[5]	CO1, CO2	
Q2.	What is an advantage of pay-as-you-go electricity services?	[5]	CO1, CO2	
Q3.	Is there a carbon budget? What does Paris Agreement say about it?	[5]	CO1, CO2	
Q4.	What are three uncertainties about climate change	[5]	CO1, CO2	
Q5.	Is it possible to deeply decarbonize the economy? Justify your answer.	[5]	CO1, CO2	
Q6.	Who are climate denials? Describe the strategies of climate denials to deny about climate change.	[5]	CO1, CO2	
	SECTION B Answer any five questions	5 X 1	5 X 10 = 50	
Q7.	Discuss various natural sources of carbon sinks? Examine which two are the biggest sources.	[10]	CO3	
Q8.	Discuss pathways that your country could continue to safely use fossil fuels?	[10]	CO3	
Q9.	Discuss how is the "precautionary principle" applied in climate change policy?	[10]	CO3	

Q10.	Examine Critically rising temperature and its impact on society and natural environment.	[10]	CO3
Q11.	Scientists know definitively how much the temperature will rise for a given increase in CO2 emission? Critically analyze the statement.	[10]	CO3
Q12	Critically examine various sources of carbon emission.	[10]	CO3
	Section D		
	Answer the question	$1 \times 20 = 20$	
Q13.	What would it take for the U.S. to achieve an 80% greenhouse gas emission reduction below the 1990 level by the year 2050; is it technically feasible; what would it cost; what physical changes are required; and what are the policy implications for the U.S.?	[20]	CO4