Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, July 2020

Course Progra Max. N	mme:	Supply Chain Network Design, Modelling & Simulation (MDSL 823) MBA Logistics & Supply Chain Management 100	Semester: Time: 03	IV 3 hrs.
		SECTION-A	Marks	s 30
S. No.	Atte	mpt all questions	Marks	CO
Q 01	Fill ir	n the blanks		
a)	Two	types of algorithms for unconstrained problem are and	02	CO 4
b)		lifferent types of queue disciplines are,,,	04	CO 3
c)	The d	lifferent types of network models are,,,,	- 04	CO 2
Q 02	Choo	se the most suitable option from the alternates given below.		
Q 02	I	Forecasts are never correct, but every organization and industry does forecasts because	e	
		a They want to know, how much wrong is their forecast?		
		b They endeavor to reduce to forecasting error	0.5	CO 01
		c They plan the future with wrong forecasts; something is better than nothingd None of the above	05	CO 03
	II	MSE for forecasting errors 4, 8, -10, 6, -12, 8, is		
		a 85		
		b 78		
		c 65	05	CO 03
		d 71		
	Ш	Long-term forecasts are done for the industry to help take decisions such as		
		a To understand industry growth rate		
		b To estimate and calculate growth in company market share		CO 01
		c To take investment decisions, if any	05	CO 01
		d All the above		

Cyclic Effect on Time Series data is IV

a Over a longer period than that in Seasonal Effect

- It is due to inflation followed by recession in the industry
- Both of the above
- None of the above

SECTION-B 05x10 = 50 Marks

(ATTEMPT ANY FIVE OF THE SIX QUESTIONS: Q 03a, Q 03b, Q 03c, Q 03d, Q 03e, Q 03f)

Q 03	A	What is Mathematical Modelling; give example.	05	CO 01
	В	Non-stationary Time Series data, has four components; what are they?	05	CO 02
	C	What are the various types of network models?	05	CO 03
	D	What are the distinct types of simulation models?	05	CO 04

F What are various elements of Queuing systems? 05 CO 03

> **SECTION-C** 01x20 = 20 Marks

Attempt the question

Q 04 Sensitivity Report obtained by solving a Linear Programing Problem in the Solver software is given below. With reference to this, please state what the <u>first table</u> stands for; and, each column in it viz., Final Value, Reduced Cost, Objective Coefficient etc. Similarly, state what the second table stands for; and, each column in it viz., Final Value, Shadow Price, Constraint R.H. Side etc.

What are the three kinds of decisions can be taken in modelling; give examples

20 CO₀₁ CO 02

CO 01

CO₀₁

CO 03

05

05

Microsoft Excel 16.0 Sensitivity Report

Worksheet: [New Microsoft Excel Worksheet.xlsx]Sheet1

Report Created: 3/27/2019 11:13:30 AM

Variable Cells

		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$G\$7	Changing Cells X1	25	0	3	1	1
\$H\$7	Changing Cells X2	60	0	2	1	0.5

Constraints

		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$I\$4	F-Constraint	100	1	100	20	20
\$1\$5	C-Constraint	90	1	90	20	20
\$I\$6	D-Constraint	20	0	40	1E+30	20