

	The manager of the company made allocation from warehouses to markets as follows: A to P : 90 units A to $\mathrm{Q}: 10$ units B to Q : 150 units C to Q : 10 units C to R: 50 units C to T: 120 units D to S : 210 units D to T: 70 units a) Justify with the reason whether the given transportation problem is a balanced transportation problem or not. b) Check whether the allocation made by the manager is optimal or not. c) If in the above problem, the transportation cost from A to R is reduced to 10. How this change will affect the optimum solution.		
Q. 3	A firm is contemplating the introduction of three products, 1,2 and 3 in its three plants A, B and C only a single product is decided to be introduced in each of the plant. The unit cost of producing one product in a plant, is given in the following matrix. Plant a) How should the product be assigned so that the total unit cost is minimized? b) If the quantity of different products to be produced is as follows, then what assignment shall minimize the aggregate production cost?	20	CO 3

	c) What would your answer be if the three product were to be produced in equal quantities? d) It is expected that the selling prices of the product produced by different plants would be different. The prices are shown in the following table: Assuming the quantities mentioned in (b) above would be produced and sold, how should the products be assigned to the plants in order to obtain maximum profits?										
Q. 4	In a railroa for each da appropriati disseminati reasoning: a) exp b) Pro If the change	arsha Accep and the is like que ility th of tr i) and	$\begin{aligned} & \mathrm{g} \text { yard, } \\ & \text { g that } \\ & \text { dmminis } \\ & \text { ise exp } \\ & \text { size (l } \\ & \text { the qu } \\ & \text { is incre } \\ & \text { i)? } \end{aligned}$	ercha betw ation ential leng e size ses to	lise trai n appea ne (the ith a no avera	show nce tim e take al of 3 of 33	at a p follow to bum minut day,	of 3 an ex a train Expl hat w	trains nential n with be the	20	CO4
Q. 5	A firm is its piece es are seen as	ing ab m is ₹ ows: $\begin{gathered} \frac{1}{200} \\ \hline \text { the } \mathrm{m} \end{gathered}$	the . For $\mathbf{2}$ 500	stitut act th 3 800 place	of a m nning $\begin{gathered} \hline \mathbf{4} \\ \hline 1200 \end{gathered}$	$\begin{gathered} \text { hine, y } \\ \text { aintena } \\ \hline \mathbf{5} \\ \hline 1800 \end{gathered}$	$\begin{gathered} \text { tose co } \\ \text { ice and } \\ \hline \mathbf{6} \\ \hline 2500 \end{gathered}$	is ₹ 12 working $\begin{gathered} \hline \mathbf{7} \\ \hline 3200 \end{gathered}$	00, and costs $\frac{\mathbf{8}}{4000}$	20	CO1

ANSWERS

