Name: Enrolment No:			
Course: Mathematical Modelling and Simulation Semester: VIII Program: B.Tech ASEA Time 03 hrs. Course Code: AVEG 452 Max. Marks: 100 Instructions: solve the problems mentioned and provide the values where ever necessary			
SECTION A			
1	Laplace transform of integral of df/dt is	5	1
2	The torque T 1 is transferred from a gear with N 2 teeth to gear with N 1 teeth, the value of the torque received at the shaft of second gear is \qquad .	5	1
3	The value of damping ratio of 0.9 in the step response of a second order system results in the maximum overshoot of \qquad	5	2
4	The unit step response of second order underdamped system exhibits the peak overshoot of 10%. If the magnitude of the input is doubled, the peak overshoot will be _. \qquad	5	2
5	The characteristic equation of a unity feedback control system is described by $s^{2}+s+5=0$. the steady state error due to unit ramp input will be \qquad _.	5	2
6	For a matrix $A=\left[\begin{array}{cc}2 & 5 \\ -1 & -3\end{array}\right]$ the eigen values will be	5	1
SECTION B			
7	Explain the process of mathematical representation of open loop system and closed loop system with examples Or Explain the process of mathematical representation of mechanical translational system and mechanical rotational system examples	10	3
8	Describe the following with respect to time domain analysis a. Transient response b. Steady state response	10	3

9	For the electrical network for lag compensator determine T and α for the networks	10	3
10	Express the given complex function in pole-zero form. Identify the zeros and poles $G(s)=\frac{3 s+4}{s(s+5)^{2}(5 s+2)}$	10	2
11	Obtain the following for the complex quantity $\frac{2+3 j}{5+7 j}$ a. Real and imaginary parts b. The magnitude c. The angle		1
SECTION-C			
12	A unity feedback control system has an open loop transfer function $G(s)=\frac{k}{s(s+4)}$ Using the root locus plot of the system, determine the following (give values): a. Centroid, number and angle of asymptotes b. Angle of departure of root loci from the poles c. Breakaway points if any d. Value of k and the frequency at which the root loci cross the $\mathrm{j} \omega$ axis Or A feedback aircraft pitch dynamics control system is shown below. $P(s)=\frac{\Theta(s)}{\Delta(s)}=\frac{1.151 s+0.1774}{s^{3}+0.739 s^{2}+0.921 s}$ Calculate the following: 1. Obtain closed loop steady state response with pitch angle reference is a 0.2 radian (11 degree) step 2. In the rootlocus plot give the following values: a. Centroid, number and angle of asymptotes b. Angle of departure of root loci from the poles c. Breakaway points if any	20	4

