**Enrolment No:** 



## UNIVERSITY WITH A PURPOSE

## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End term Examination, June/July 2020

End term Examination, June/July 20

Course: Computational Fluid dynamics Program: (ADE) Course Code: GNEG403

Semester: VIII Time : 03 hrs. Max. Marks: 100

## **Instructions:**

| SECTION A (15*2=30 marks)<br>( Answer of each question) |                                                                                        |       |     |
|---------------------------------------------------------|----------------------------------------------------------------------------------------|-------|-----|
| S. No.                                                  |                                                                                        | Marks | СО  |
| Q1                                                      | Which of these is not a type of flows based on their mathematical behaviour?           |       |     |
|                                                         | a) Circular                                                                            |       |     |
|                                                         | b) Elliptic                                                                            | 2     | CO1 |
|                                                         | c) Parabolic                                                                           |       |     |
|                                                         | d) Hyperbolic                                                                          |       |     |
| Q2                                                      | The lines along which the derivatives of the dependent variables are indeterminate are |       |     |
|                                                         | called                                                                                 |       |     |
|                                                         | a) parabolic lines                                                                     | 2     | CO1 |
|                                                         | b) characteristic lines                                                                | -     | cor |
|                                                         | c) hyperbolic lines                                                                    |       |     |
|                                                         | d) transition lines                                                                    |       |     |
| Q3                                                      | The stability of the Crank-Nicolson scheme for finite volume approach is constrained   |       |     |
|                                                         | by                                                                                     |       |     |
|                                                         | a) CFL number                                                                          | 2     | CO1 |
|                                                         | b) Peclet number                                                                       | 4     | COI |
|                                                         | c) Time-step size                                                                      |       |     |
|                                                         | d) Spatial grid size                                                                   |       |     |
| Q4                                                      | Find the nature of the second-order wave equation.                                     |       |     |
|                                                         | a) Hyperbolic/elliptic                                                                 |       |     |
|                                                         | b) Parabolic                                                                           | 2     | CO1 |
|                                                         | c) Hyperbolic                                                                          |       |     |
|                                                         | d) Elliptic                                                                            |       |     |

| Q5         | How many numerical diffusion terms does the second-order upwind Euler scheme                 |   |     |
|------------|----------------------------------------------------------------------------------------------|---|-----|
| <b>۲</b> ۲ | have?                                                                                        |   |     |
|            | a) Infinity                                                                                  |   |     |
|            | b) No diffusion term                                                                         | 2 | CO1 |
|            | c) One term                                                                                  |   |     |
|            | d) Two terms                                                                                 |   |     |
| Q6         | Which of these methods of solving a system of equations will be needed after using           |   |     |
|            | an explicit scheme?                                                                          |   |     |
|            | a) Sequential                                                                                | 2 | CO1 |
|            | b) Simultaneous                                                                              | - | 001 |
|            | c) Iterative                                                                                 |   |     |
|            | d) Direct                                                                                    |   |     |
| Q7         | An equation modelled using infinitesimally small element leads to                            |   |     |
|            | a) Partial differential equation                                                             |   |     |
|            | b) Integral equation                                                                         | 2 | CO1 |
|            | c) Differential equation                                                                     |   |     |
|            | d) Linear differential equation                                                              |   |     |
| Q8         | What is the main disadvantage of explicit schemes in a time-dependent problem?               |   |     |
|            | a) Marching solution                                                                         |   |     |
|            | b) Simultaneous equations                                                                    | 2 | CO1 |
|            | c) Small time-step size                                                                      | - | 001 |
|            | d) Small grid size                                                                           |   |     |
| Q9         | For flows over a flat plate, at length scales near to the length of the flat plate, which of |   |     |
| Q)         | these is correct?                                                                            |   |     |
|            | a) Inertial force is zero                                                                    | 2 | CO1 |
|            | b) Inertial force is large                                                                   | 4 |     |
|            | c) Inertial force is equal to viscous force                                                  |   |     |
|            | d) Viscous force is large                                                                    |   |     |
| Q10        | Which of these statements is correct?                                                        |   |     |
|            | a) Inertia forces dominate in the flow far from the wall                                     |   |     |
|            | b) Viscous forces dominate in the flow far from the wall                                     | 2 | CO1 |
|            | c) Inertia forces are small in the flow far from the wall                                    |   |     |
|            | d) Viscous forces are large in the flow near the wall                                        |   |     |
|            |                                                                                              |   | 1   |

| Q11  | 3. Which of these laws define the dimensionless quantities u+ and y+?                                                                                                                                |   |     |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|
|      | <ul> <li>a) Velocity-defect law</li> <li>b) Log-law</li> <li>c) Newton's law of viscosity</li> <li>d) Law of the wall</li> </ul>                                                                     | 2 | CO1 |
| Q12  | A rectangular plane stress element hasdegree's of freedom                                                                                                                                            |   |     |
|      | a) 3<br>b) 5<br>c) 8<br>d) 6                                                                                                                                                                         | 2 | CO1 |
| Q13  | In weighted residual technique, the methods adopted are<br>(a) Galerkin's method<br>b)least square method<br>c)none of the above<br>d) all of the above                                              | 2 | CO1 |
| Q14  | The triangular node element is used in         a) One dimensional problem         b) Two dimensional element         c) Three dimensional element         d) None of the above                       | 2 | CO1 |
| Q15  | In Galerkin's weighted residual method the shape function or interpolation function<br>may be<br>a) Same<br>b) Different<br>c) May be same or different<br>d) Depends on the type of equation solved | 2 | CO1 |
|      | SECTION B (10*5=50 marks)<br>( Answer of each question should be below 150 words)                                                                                                                    |   |     |
| Q 16 | Comment on the CFD tools utilization and its limitation.                                                                                                                                             | 5 | CO1 |
| Q 17 | Differentiate between dispersive and dissipative error in context of numerical discretization.                                                                                                       | 5 | CO2 |
| Q 18 | Explain the boundary conditions used in FVM.                                                                                                                                                         | 5 | CO3 |
| Q 19 | Differentiate between the FVM and FEM.                                                                                                                                                               | 5 | CO1 |
| Q 20 | Give and explain the five errors in CFD and give examples                                                                                                                                            | 5 | CO1 |

| Q 21                         | Discuss about the wave equation used in Finite difference method                                                                                                                                          | 5  | CO2 |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| Q 22                         | Differentiate between explicit and implicit methodology using one dimensional wave equation                                                                                                               | 5  | CO2 |
| Q 23                         | Define the terms consistency and convergence for numerical simulation.                                                                                                                                    | 5  | CO1 |
| Q 24                         | Emphasis on the advantages and limitation of Finite Difference, Finite Element and Finite Volume Method.                                                                                                  | 5  | CO2 |
| Q 25                         | Discuss the stability criteria and how it is achieved in numerical solution                                                                                                                               | 5  | CO3 |
| SECTION C (1*20 = 20 marks ) |                                                                                                                                                                                                           |    |     |
| Q 26                         | Explain the steps to solve an equation (given in differential form) using Finite volume method.<br>OR<br>Explain the steps to solve an equation (given in differential form) using Finite element method. | 20 | CO4 |