Name: Enrolment No:					
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, July 2020 Programme Name: B.Tech/ADE Semester : VIII					
Course Name: Finite Element methodTimeCourse Code: ADEG471Max. MarNos. of page(s): 02Max. Mar			ne : 0 x. Marks: 10	: 03 hrs	
Instructions: Attempt all the questions as directed. Assume suitable data if required. SECTION A					
S. No.			Mar ks	СО	
Q1	The truss element can resist only [A] axial force [B] surface force [C] point load [D] none		5	CO1	
Q2	The determinant of an element stiffness ma [A] 1 [B] 0	trix is always [C] 2 [D] no	me 5	CO2	
Q3	Example of 2-D Element [A] Bar [B] Triangle [C] Hexahedron [D] Tetrahedron		5	CO1	
Q4	The final global finite element equation for the Matrix form [A] {F}=[k]+{u} [B] {F}=[k]-{u} [C] {F}=[k]{u} [D] {F}=[k]/{u}	the complete structure can be writter	n in 5	CO3	
Q5	Stiffness matrix for 2D triangular plane stre [A] $[B]^{T}[D]$ [B] A t [B] $[B][D]^{T}$ [B] A t [C] $[D]^{T}[D]$ [B] A t [D] $[D]^{T}[B]$ [D] A t	ess element	5	CO2	
Q6	The sub domains are called as [A] particles [B] molecules [C] el	ements [D] None	5	CO1	
SECTION B					
Q7	Why polynomial type of interpolation funct	tions are mostly used in FEM?	10	CO1	
Q8	During discretization, mention the places w		10	CO1	
Q9	The x, y coordinates of nodes i, j and k o $(4,3)$ and $(6,4)$ mm respectively. Determin			CO2	

	the interior point P (3.5, 2.95) mm for the element.			
Q10	Explains the following (i) Variational approach (ii) Weighted residual approach		CO1	
Q 11	 (i) State the assumptions made while finding the forces in a truss. (ii) Define stiffness matrix and explain its special features. (OR) An alloy bar 1m long and 200mm² in cross-section is fixed at one end is subjected to a compressive load of 20 kN on the other end. If the modules of elasticity for the alloy is 100 GPa, find the decrease in the length of the bar. Also, determine the stress developed and the decrease in the length at 0.25m, 0.5m, and 0.75m. Solve by FEM. 		CO3	
SECTION-C				
Q 12	Consider a simple one dimension structure with four elements, explain the process of stiffness matrix and load vector assembly. Write the global finite element equation. (OR) List and briefly explain the general steps of the finite element method. Write down the advantages, disadvantages, and applications of the finite element method.	20	соз	