Name:

Enrolment No:

UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2020

Programme Name:B.Tech ADECourse Name:Operations ResearchCourse Code:ADEG461Nos. of page(s):3Instructions:.

Semester : VIII Time : 03 hrs Max. Marks: 100

			Section A				
Q1	The initial basic feasible solution for the following transportation problem using NWCM is						CO3
			to		Supply		
	From	2 3	7 3 4	4 1 7	5 8		
		5			7		
		1	6	2	14		
	Demand	7	9	18			
	O3; and a unit	of P3 requir	3; one unit of P2 res 4h of O1, 3h o	requires 3h of O2, and 4h	unit of P1 requires 2h of O1, 1h of O2 and 2h of O3. O1, O2 and O3 c	of an	
	O3; and a unit of operate for a m of P1, P2 and	of P3 requir aximum of P3 is Rs 2,	3; one unit of P2 res 4h of O1, 3h o 40 h, 50h and 15	t requires 3h c of O2, and 4h of respectively. I	of O1, 1h of O2 and 2h of O3. O1, O2 and O3 c ly. The profit on each us f all the products is so	of an nit	
Q3	O3; and a unit of operate for a m of P1, P2 and Write the corre	of P3 requir aximum of P3 is Rs 2, ct formulati	3; one unit of P2 res 4h of O1, 3h of 40 h, 50h and 15 Rs 4 and Rs 3 on of the LPP to window drive-in rvice time per cus	2 requires 3h c of O2, and 4h o 60h respectively. I maximize the bank accordin	of O1, 1h of O2 and 2h of O3. O1, O2 and O3 c ly. The profit on each us f all the products is so	of an nit ld,	CO:
Q3	O3; and a unit of operate for a m of P1, P2 and Write the corre Customers arriv with mean 12 p minutes. The tr	of P3 requir aximum of P3 is Rs 2, ct formulati ve at a one-ver ber hour. Ser raffic intensi	3; one unit of P2 res 4h of O1, 3h of 40 h, 50h and 15 Rs 4 and Rs 3 on of the LPP to window drive-in rvice time per cus	2 requires 3h control of O2, and 4h of O2, and 4h of O2, and 4h of O2 of	of O1, 1h of O2 and 2h of O3. O1, O2 and O3 c ly. The profit on each us if all the products is so profit. g to Poisson distribution	of an nit ld,	CO

		Player B				5	CO4
	Player A	$ \begin{array}{c c} Player \\ B_1 \\ A_1 \\ A_2 \\ A_3 \\ \end{array} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{array} $	$\begin{array}{c c} B \\ \hline B_2 & B_3 \\ 3 & 1 \\ -4 & -3 \\ 5 & 1 \\ \end{array}$				
	The position	of the saddle p	point is				
	A) (A_1, B_1)	B) (A ₁	, B ₃) C)	(A_3, B_1)	D) (A ₃ , B ₃)		
25	Consider the	following proj	ect				
-	Activity	Optimistic time estimate	Most likely time estimate	Pessimistic time estimate		5	CO4
	1-2	1	7	13			
	1-6	2	5	14			
	2-3	2	14	26			
	2-4	2	5	8			
	3-5	7	10	19			
	4-5	5	5	17			
	5-8	3	3	9			
	6-7	5	8	29			
	7-8	8	17	32			
	Expected proj A) 36 B) 4	ject duration is 2 C) 54	D) 23				
Q6		nent problem t		by different we	orkers in comple	eting the 5	CO
Q6	In an assignn	nent problem t is given by	Jobs		orkers in comple	eting the 5	CO
Q6	In an assignn different jobs	nent problem t is given by I II	Jobs III	IV		eting the 5	CO
Q6	In an assignm different jobs A	nent problem t is given by I II 8	Jobs III 10	IV 12	16	eting the 5	CO
Q6	In an assignn different jobs A Workers B	nent problem t is given by I II 8 11	Jobs III 10 11	IV 12 15	16 8	eting the 5	CO
Q6	In an assignm different jobs A	nent problem t is given by I II 8	Jobs III 10	IV 12	16	eting the 5	CO:

	Section B		
Q7	Explain industrial application of Linear Programming.	10	CO1
Q8	Compare transportation model with assignment model.	10	CO2
Q9	Explain the terms activity, event, network and path.	10	CO1
Q10	Explain properties of a game.	10	CO2
Q11	Explain any two queuing model with help of suitable examples.	10	CO3

	Section C		
Q12	Write different steps to solve LPP by BIG M method	20	CO2