Name:						
Enrolment No:						
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Supplementary Examination, July 2020						
Programme Name: B.Tech/Mechanical Semester						
Course Name : Computational Fluid Dynamics Time				3 hrs		
Course Code: GNEG403Max. Marks:Nos. of page(s): 02						
Nos. of page(s) : 02 Instructions: Attempt all the questions as directed. Assume suitable data if required.						
mstru	A A	CTION A				
S.			Mar			
No.			ks	CO		
Q 1	Computational fluid dynamics is the metho	d to calculate heat transfer and fluid flow				
	(a) numerically					
	(b) experimentally		5	CO1		
	(c) instantaneously					
	(d) None					
Q 2	Discretization technique is					
	(a) Finite volume					
	(b) Finite difference		5	CO1		
	(c) Finite element					
0.2	(d) All of these					
Q 3	For partial differential equation, if b2-4ac =	= 0 then equation is called				
	(a) Hyperbolic(b) Parabolic			C01		
	(c) Elliptic		5	COI		
	(d) None					
Q 4	Truncation error becomes zero as mesh spa	cing tends to				
x .	(a) maximum					
	(b) minimum		5	CO2		
	(c) zero					
	(d) none					
Q 5	When a direct computation of the depen	dent variables can be made in terms of				
	known quantities, the computation is said to	b be				
	(a) implicit		5	CO2		
	(b) explicit		5	002		
	(c) unique					
0.6	(d) dependent					
Q 6	For highly refined mesh, computational time required is					
	(a) low		_	CON		
	(b) high		5	CO2		
	(c) near to zero(d) none					

	SECTION B		
Q 7	Classify the second order partial differential equations.		CO1
Q 8	Differentiate between Finite difference methods, Finite volume method.		CO1
Q 9	Explain the following. a) Truncation error b) Round off error c) Discretization error		CO2
Q 10	Explain the following. a) Stability b) Consistency c) Convergence		CO2
Q 11	Distinguish between : a) Steady flow and un-steady flow, b) Uniform and non-uniform flow, c) Compressible and incompressible flow d) Rotational and irrotational flow e) Laminar and turbulent flow. (OR) (i) Explain finite volume method for one-dimensional steady state diffusion problems. (ii) Discuss in detail the advantages and disadvantages of FVM. SECTION-C	10	CO1
Q 12	Formulate the 1D steady heat conduction with constant heat generation in finite element method. Find out the shape functions and stiffness matrix. Boundary conditions are constant temperature at both the ends . (OR) (i) Differentiate between implicit and explicit finite difference method. (ii) How computational Fluid Dynamics is different from analytical technique? Write its advantages and limitations. (iii) Why forward and backward difference expressions are not more accurate than central difference expressions?	20	CO3