

Programme	:	B.Tech Mechanical, Mechanical- all specializations	
Semester	:	VIII	
Name of the Course	:	Tribology	
Course Code	:	ADEG 353	

Section A: 30 Marks

1. Multiple choice questions: 2 marks each

- (i) As per laws of dry friction, the frictional force
 - a. Depends on nature of sliding force
 - b. Is independent of sliding velocity
 - c. Is directly proportional to load
 - d. All of the above
- (ii) The following is not a sliding contact bearing
 - a. Ball bearing
 - b. Journal bearing
 - c. Roller bearing
 - d. All of the above
- (iii) Boundary friction conditions may develop in journal bearings, when shaft passes through zero speed during
 - a. Starting
 - b. Stopping
 - c. Reversing
 - d. All of the above
- (iv) The following lubricants are obtained from petroleum
 - a. Mineral Oils
 - b. Grease
 - c. Solid lubricants
 - d. All of the above
- (v) For low pressure and low speed condition, we use
 - a. Mineral Oils
 - b. Semi Solid lubricants
 - c. Solid lubricants
 - d. None of these

(vi)	A base oil									
	a. Is the minor component of an oil based lubricant									
	b. Is an oil additive that counteracts oil acidity arising from oil degradation									
	c. Can be mineral, synthetic or biological in origin and constitutes the major									
	component of lubricant									
	d. Is a reference oil used for base line comparisons									
(vii)	For a hydrodynamic journal bearing, an eccentricity ratio of about 0.7									
` /	a. Gives maximum bearing load capacity									
	b. Gives minimum bearing friction									
	c. Gives minimum bearing vibration									
	Gives minimum bearing temperature rise									
(viii)	Out of the following disciplines, which one is not considered for an interdisciplinary									
` /	approach in tribology?									
	a. Solid and Fluid Mechanics									
	b. Chemistry									
	c. Material Science									
	d. Industrial Engineering									
(ix)	Which one of the following is NOT the purpose of Tribology?									
` '	a. Improve service life									
	b. Increase safety and reliability									
	c. Reduce fatigue									
	d. Increase heat generation									
(x)	The function of bearing is to									
` '	a. support load									
	b. transmit power									
	convert rotary to reciprocating movement									
	d. All of the above									
(xi)	Lubricants should have shear strength at the interface for lower coefficient of									
, ,	friction									
	a. Low									
	b. High									
	c. No role of shear strength									
<i>(</i> ···)	d. None of these									
(xii)	To find out coefficient of lubrication in mixed lubrication can be used.									
	a. Junction growth theoryb. Holm's equation									
	c. Burwell & Strang equation									
	d. None of these									
(xiii)	occurs in temperature distress gap.									
, ,	a. Chemisorption									
	b. Physisorption									
	c. Both									
	d. Neither chemisorption nor physisorption									
(xiv)	is an example of EP additive									
	•									

		a.	Sulfur					
		b.	Chlorine					
		c.	Boron					
		d.	All of these					
(xv	v)			are used as orga	nic binders.			
		a.	Ceramics	_				
		b.	Metals					
		c.	Grease					
		d.	None of these					
				Section B: 50) marks			
2.		•	•	drodynamic journal	_	er the que	estions:	
				μ r, μ = 0.0127, W = 70				
				bar, μ = 0.0026, W= 7				
			-	ure that bearing can be	ear, W is load bearing	ng capacit	ty, μ is coeffic	ient
			tion.				6 : 0.7	
			_	s, which would be be	etter from tribologi	cal point	of view? Exp	laın
2	Wl	•		C O2			CO2	
			•	rication and hydrody		002	CO3	
4.			_	roperties from a bour		CO ₃	1	
_			_	lisadvantages of grea			urana armfaaa	(D)
6.		tho		urface roughness (R _a (6)	i) method and root	mean sq	uare surface ($(\mathbf{K}_{\mathbf{q}})$
				ions below and explain	oin which mothod s	vould siv	va lassar arror	and
	ъ. wh		aryzing me equat	(4)	ani winch memou v	CO2		anu
	WII	ıy.		(4)		CO2	'	
				$\mathbf{R}_{\mathbf{a}} = \frac{1}{N} \sum_{i=1}^{N} Z_i$	$R_{\rm q} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} Z_i}$	- 'i		
				Section C: 20 ma	arks (CO4)			
7.	A.	Wr	ite the three nece	ssary parameters that	t are considered wh	ile design	ning journal	
		arin		(5)				
	B.	De	escribe how these	parameters may affe	ect load bearing cap	acity and	coefficient of	f
		fric	ction.		(10))		
	C.	\mathbf{W}_{1}	rite all the steps f	for designing a hydro	dynamic journal be	aring.	(5)	