UNIVERSITY OF PETROLEUM AND ENERGY STUDIES
End Semester Examination, May 2020
Course: Fuzzy Logic \& Neural Network
Program: B.Tech. Electroncis Engineering (IoT)
Course Code: ICEG 441

Semester: VIII
Time 03 hrs.
Max. Marks: 100

$$
\text { Section A (30 marks - } 5 \text { marks each) - Choose the correct answer }
$$

Q 1. Which of the following figure represent a symmetrical hard limit activation function?

A.

B.

C.

D.

Q 2. Which of the following equation correctly represents the output (a) obtained from the neuron model below?

A. $w=f(a n+b)$
B. $a=f(w b+p)$
C. $a=f(w p+b+\mathrm{n})$
D. $a=f(p w+b)$

Q 3. For the fuzzy sets A and B given below, select the Cartesian product $A \times B$

$$
\underset{\sim}{\mathrm{A}}=\frac{0.2}{x_{1}}+\frac{0.5}{x_{2}}+\frac{1}{x_{3}} \quad \text { and } \quad \underset{\sim}{\mathrm{B}}=\frac{0.3}{y_{1}}+\frac{0.9}{y_{2}} \text {. }
$$

$$
\underset{\sim}{\mathrm{A}} \times \underset{\sim}{\mathrm{B}}=\underset{\sim}{\mathrm{R}}=\underset{x_{1}}{x_{2}} \begin{gathered}
x_{2} \\
x_{3}
\end{gathered} \begin{array}{cc}
y_{2} \\
x_{3}
\end{array}\left[\begin{array}{ll}
0.2 & 0.2 \\
0.3 & 0.5 \\
0.3 & 0.9
\end{array}\right] .
$$

A.

$$
\left.\underset{\sim}{\mathrm{R}}=\begin{array}{c}
x_{1} \\
x_{1} \\
x_{2}
\end{array} \begin{array}{cc}
y_{1} & y_{2} \\
0.7 & 0.5 \\
0.8 & 0.4
\end{array}\right]
$$

B.
C. Both a and b are correct
D. None of the above

Q 4. From the fuzzy sets given below identify the mathematical operation.

A. Intersection of fuzzy sets A and B
B. Union of fuzzy sets A and B
C. Complement of fuzzy sets A and B
D. All of the above

Q 5. Which among the following fuzzy sets is a convex set?
A.

B.
C.

Q 6. Which of the following represents centroid defuzzification method?
A. $z^{*}=\frac{\sum \mu_{\underset{C}{c}}(\bar{z}) \cdot \bar{z}}{\sum \mu_{\mathrm{C}}(\bar{z})}$
B. $z^{*}=\frac{a+b}{2}$

$$
z^{*}=\frac{\int \mu_{\mathrm{C}}(z) \cdot z \mathrm{~d} z}{\int \mu_{\mathrm{C}}(z) \mathrm{d} z}
$$

D. None of the above

Section B (50 marks - 10 marks each) - Answer in around 5 lines (150 words)

Q 7. Discuss the importance of bias input in an artificial neuron model.
Q 8. Using mean max membership defuzzification method, calculate the crisp value form the fuzzy set given below.

Q 9. The input to a single-input neuron is 2.0 , its weight is 3 and its bias is -1.5 . (a) Calculate the net input to the transfer function, (b)What is the neuron output if the neuron has a hardlimit transfer function.
Q 10. Consider a single-input neuron with a bias. We would like the output to be -1 for inputs less than 3 and +1 for inputs greater than or equal to 3 .
a. What kind of a transfer function is required?
b. What bias would you suggest? Is your bias in any way related to the input weight? If yes, how?

Q 11. For the following sets A and B. calculate the (a) union, (b)intersection, for the sets. Also find. Consider the universe of discourse as $\{0,1,2,3,4\}$

Fuzzy Set A $=\{1 / 1+0.3 / 2+0.1 / 3+0.3 / 4\}$, Fuzzy Set B $=\{0.3 / 1+0.5 / 2+0.3 / 3+0.7 / 4\}$

Section C (20 marks) - Answer in around 700 words

Q 12. Explain the concept of decision boundary. How a perceptron network acts as a classifier? Describe with help of an example.

2-input Perceptron Model

Required decision boundary

