Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2020

Course: Mathematical Modelling and Simulation Program: B.Tech ASEA

Course Code: AVEG 452

Semester: VIII Time 03 hrs. Max. Marks: 100

Instructions: solve the problems mentioned and provide the values where ever necessary SECTION A

1	Laplace transform of integral of f(t) is	5	
2	The torque T1 is transferred from a gear with N1 teeth to gear with N2 teeth, the value of the torque received at the shaft of second gear is	5	
3	The value of damping ratio of 0.6 in the step response of a second order system results in the maximum overshoot of	5	
4	The unit step response of second order underdamped system exhibits the peak overshoot of 15%. If the magnitude of the input is doubled, the peak overshoot will be	5	
5	The characteristic equation of a unity feedback control system is described by $2s^2 + 3s + 5 = 0$. the steady state error due to unit ramp input will be	5	
6	For a matrix $A = \begin{bmatrix} 1 & 4 \\ -2 & -5 \end{bmatrix}$ the eigen values will be	5	
	SECTION B		
7	Differentiate between feedback and feed forward system Or Differentiate between lead and lag compensators	10	
8	Describe the following with respect to stability a. Absolute stability b. Conditional stability c. Relative stability	10	
9	The electrical network for lead compensator is shown below, determine T and α for the networks	10	

	$I = \frac{1}{2}$		
10	Express the given complex function in pole-zero form. Identify the zeros and poles $G(s) = \frac{5s+6}{s(s+7)^2(10s+3)}$	10	
11	Write steps involved in developing mathematical model		
	SECTION-C		
12	A unity feedback control system has an open loop transfer function $G(s) = \frac{k}{s(s^2 + 4s + 13)}$ Using the root locus plot of the system, determine the following (give values): a. Centroid, number and angle of asymptotes b. Angle of departure of root loci from the poles c. Breakaway points if any d. Value of k and the frequency at which the root loci cross the j ω axis		
	Or		
	 A feedback aircraft pitch dynamics control system is shown below. P(s) = θ(s)/Δ(s) = 1.151s + 0.1774/s³ + 0.739s² + 0.921s Calculate the following: 1. Obtain closed loop steady state response with pitch angle reference is a 0.2 radian (11 degree) step 2. In the rootlocus plot give the following values: a. Centroid, number and angle of asymptotes b. Angle of departure of root loci from the poles c. Breakaway points if any 	20	