Name: Enrolment No:		
Cours Progr Cours Instru	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2020 Mathematical Modelling and Simulation n: B.Tech ASEA Code: AVEG 452 ions: solve the problems mentioned and provide the values where ever necessary	
SECTION A		
1	Laplace transform of integral of $f(t)$ is	5
2	The torque T1 is transferred from a gear with N1 teeth to gear with N2 teeth, the value of the torque received at the shaft of second gear is \qquad -.	5
3	The value of damping ratio of 0.6 in the step response of a second order system results in the maximum overshoot of \qquad	5
4	The unit step response of second order underdamped system exhibits the peak overshoot of 15%. If the magnitude of the input is doubled, the peak overshoot will be \qquad -.	5
5	The characteristic equation of a unity feedback control system is described by $2 s^{2}+3 s+5=0$. the steady state error due to unit ramp input will be \qquad -.	5
6	For a matrix $\mathrm{A}=\left[\begin{array}{cc}1 & 4 \\ -2 & -5\end{array}\right]$ the eigen values will be	5
SECTION B		
7	Differentiate between feedback and feed forward system Or Differentiate between lead and lag compensators	10
8	Describe the following with respect to stability a. Absolute stability b. Conditional stability c. Relative stability	10
9	The electrical network for lead compensator is shown below, determine T and α for the networks	10

10	Express the given complex function in pole-zero form. Identify the zeros and poles $G(s)=\frac{5 s+6}{s(s+7)^{2}(10 s+3)}$	10	
11	Write steps involved in developing mathematical model		
	SECTION-C		
12	A unity feedback control system has an open loop transfer function $G(s)=\frac{k}{s\left(s^{2}+4 s+13\right)}$ Using the root locus plot of the system, determine the following (give values): a. Centroid, number and angle of asymptotes b. Angle of departure of root loci from the poles c. Breakaway points if any d. Value of k and the frequency at which the root loci cross the $\mathrm{j} \omega$ axis Or A feedback aircraft pitch dynamics control system is shown below. $P(s)=\frac{\Theta(s)}{\Delta(s)}=\frac{1.151 s+0.1774}{s^{3}+0.739 s^{2}+0.921 s}$ Calculate the following: 1. Obtain closed loop steady state response with pitch angle reference is a 0.2 radian (11 degree) step 2. In the rootlocus plot give the following values: a. Centroid, number and angle of asymptotes b. Angle of departure of root loci from the poles c. Breakaway points if any	20	

