Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2020

Course: Operations Research Program: B.Tech – ADE Course Code: ADEG461 Instructions:

Semester: VIII Time 03 hrs. Max. Marks: 100

SECTION A

S. No.								Marks	CO
Q 1	The initial basic feasible solution for the following transportation problem using NWCM is								
	Destination								
	Source		А	В	С	Supply		_	CON
		Р	2	7	4	5	5		CO3
		Q	3	3	1	8			
		R	5	4	7	7			
		S	1	6	2	14			
		Demand	7	9	18	34			
Q 2	If you solve the following linear programming problem by graphical method Max Z = 5X + 7Y Subject to constraints, $X + Y \le 4$ $3X + 8Y \le 24$ $10 X + 7Y \le 35$ $X, Y \ge 0$ The optimal solution is $X = $, $Y = $						5	CO2	
Q 3	For a game, the value of the pay-off matrix is given below						5	CO4	
	Player B								

	The value of the g (A) 2	Player A	-2 0 0 5 3 2 1 2 -4 -3 0 -2 5 3 -4 2 (D) 1	$\begin{bmatrix} 3 \\ 2 \\ 6 \\ -6 \end{bmatrix}$		
Q 4		r. Service time per cu	stomer is exponentia	g to Poisson distribution with al with mean 5 minutes. Th D) 0.25		CO3
Q 5	Consider the follow Activity 1-2 1-6 2-3 2-4 3-5 4-5 5-8 6-7 7-8 The critical path is (A) 1-2-3-5-8	Optimistic time estimate 3 2 6 2 5 3 1 3 4	Most likely time estimate 6 5 12 5 11 6 4 9 19 (C) 1-6-7-8 (D) 1	Pessimistic time estimate 15 14 30 8 17 15 7 27 28	5	CO4
Q 6	different jobs is g	problem the time take given by I A 8 Workers B 11 C 9	en by different worke Jobs II III 10 12 11 15 6 5	IV 16 8 14	5	CO3

	The total time	D taken to compl	15 ete the jobs is	14 9		7			
	(A)42	(B) 54	(C) 31	(D) 28					
			SE	CTION B					
Q 7	Explain areas of application of Linear Programming.					10	CO1		
Q 8	Differentiate Programme Evaluation and Review Technique (PERT) and Critical Path Method (CPM).					10	CO2		
Q 9	Explain the terms queue length, system length and traffic intensity.					10	CO1		
Q 10	Explain properties of a game.					10	CO2		
Q 11	Write different steps to solve LPP by simplex method.					10	CO2		
			SE	CTION C					
Q 12	Classify the queueing models with the help of suitable examples.					20	CO3		