Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End term Examination, April/May 2020

Course: Computational Fluid dynamics Program: (ADE / Mechanical) Course Code: GNEG403

Semester: VIII Time : 03 hrs. Max. Marks: 100

Instructions:

SECTION A (15*2=30 marks) (Answer of each question)

S. No.		Marks	СО
Q1	In a one-dimensional flow, the volume integral becomes		
	a) a line integral	2	CO1
	b) an area integral		
	c) a surface integral		
	d) a surface integral and the Gauss divergence theorem		
Q2	Which of these terms need a volume integral while modelling steady flows?		CO1
	a) Convection term		
	b) Diffusion term	2	
	c) Source term		
	d) Rate of change term		
Q3	The stability of the Crank-Nicolson scheme for finite volume approach is constrained	2	CO1
	by		
	a) CFL number		
	b) Peclet number		
	c) Time-step size		
	d) Spatial grid size		
Q4	Which of these terms cause instability in the Crank-Nicolson scheme when used for	2	CO1
-	finite volume approach?		
	a) Anti-diffusion term		
	b) Anti-dispersive term		
	c) Diffusion term		
	d) Dispersive term		
Q5	How many numerical diffusion terms does the second-order upwind Euler scheme	2	C01
	have?		
	a) Infinity		
	b) No diffusion term		
	c) One term		
	d) Two terms		

06	The avaraginal discoursion terms of the second and an avaraginal Eulan schemes is of		1
Q6	The numerical dispersion term of the second-order upwind Euler scheme is of		
	a) third-order	•	001
	b) second-order	2	CO1
	c) first-order		
07	d) no dispersion		
Q7	An equation modelled using infinitesimally small element leads to		
	a) Partial differential equation	-	G Q 1
	b) Integral equation	2	CO1
	c) Differential equation		
	d) Linear differential equation		
Q8	If this model is used to get the governing equations, what type of equation will be		
	obtained?		
		2	CO1
		_	
	computational-fluid-dynamics-questions-answers-models-flow-q7		
	a) Non-conservative differential		
	b) Conservative differential		
	c) Conservative integral		
0.0	d) Non-conservative integral		
Q9	Truncation error is the difference between		
	a) the exact solution of the partial differential equation and the discretized equations	-	0.01
	b) the exact partial differential equation and the discretized equations	2	CO1
	c) the exact solution and the numerical solution of the partial differential equations		
	d) the exact partial differential equation and its solution		
Q10	Which is the major error occurring due to the finite difference approximations?		
	a) Discretization error		
	b) Round-off error	2	CO1
	c) Iteration error		
	d) Modelling errors		
Q11	What is the need of constructing a model for analysing fluids?		
	a) Fluids are not stationary but they have the same velocity in different parts		
	b) Fluids are stationary and they have the same velocity in different parts	2	CO1
	c) Fluids are not stationary and they have different velocities in different parts		
	d) Fluids are not stationary but they have the same velocity in different parts		
Q12	A triangular plane stress element hasdegree's of freedom		
	a) 3		
	b) 5	2	CO1
	c) 7		
	d) 6		
Q13	In weighted residual technique, the methods adopted are		
	a) Galerkin's method	r	CO1
	b) b)least square method	2	
	c) c)none of the above		

	d) d) none of the above		
Q14	The triangular node element is used in		
	a) One dimensional problem		
	b) Two dimensional element	2	CO1
	c) Three dimensional element		
015	d) None of the above		
Q15	In Galerkin's weighted residual method the shape function or interpolation function may be		
	a) Same		
	b) Different	2	CO1
	c) May be same or different	-	
	d) Depends on the type of equation solved		
	SECTION B (10*5=50 marks) (Answer of each question should be below 150 words)		
	(Answer of each question should be below 150 words)		
Q 16	Explain why CFD is both a powerful and a dangerous tool.	5	CO1
Q 17	Discuss the nature of dispersive and dissipative error in context of numerical	5	CO2
0.10	discretization.		
Q 18	Explain the types of boundary conditions used in FDM.	5	CO3
Q 19	Differentiate between the FDM, FVM and FEM.	5	CO1
Q 20	Give and explain the five errors in CFD and give examples	5	CO!
Q 21	Discuss about the Burger equation used in Finite difference method	5	CO2
Q 22	Differentiate between explicit and implicit methodology using one dimensional wave equation	5	CO2
Q 23	Define the terms consistency and convergence for numerical simulation.	5	CO1
Q 24	Emphasis on the advantages and limitation of Finite Difference, Finite Element and Finite Volume Method.	5	CO2
Q 25	Discuss the stability criteria and how it is achieved in numerical solution	5	CO3
	SECTION C (1*20 = 20 marks)		
Q 26	Explain the steps to solve an equation (given in differential form) using Finite		
	volume method.		
	OR	20	
	Explain the steps to solve an equation (given in differential form) using Finite element method.	20	CO4