Name: UPES				
Enrolment No:				
	UNIVERSITY OF PETROLEUM AND ENERGY STUD	IES		
	End Semester Examination, May 2020			
			ester : VIII	
Course Name : Corrosion Engineering Time		ie	: 03 hrs	
Course Code : MTEG364 Max		x. Marks	: 100	
Nos. of j				
	ions: The question paper consists of three sections. Answer the questions section wise.			
Note: A	ssume suitable data wherever necessary			
	SECTION A (This section includes multiple choice questions and fill in the blanks)			
	(Answer all questions)			
S. No.		Marks	СО	
Q1	(i) What is the most common method to measure soil electrolyte resistivity			
	a. 4 pin Wenner method			
	b. 8 pin Wenner method			
	c. Resistivity meter			
	d. 4 pin Wendy method	(2.5 +		
		2.5	CO4	
	(ii) Ferritic stainless steel immunity to	,		
	a. Crevice corrosion			
	b. Stress corrosion crackingc. Pitting corrosion			
	c. Pitting corrosion d. Erosion corrosion			
Q2	(i) A galvanic cell is formed	-		
X -	a. When two metals are immersed in solutions differencing in concentration			
	b. When two different metals are immersed in one electrolyte			
	c. When two different metals are exposed to dry air			
	d. When two metals are brought close together and electrically insulated from			
	one another	(2.5 +	CO3	
	(ii) Colort the right common and a material for immediate discussion	2.5)		
	(ii) Select the right common anode material for impressed current cathodic protection a. Graphite			
	b. Gold			
	c. Wood			
	d. glass			
Q3	(i) Choose the correct answer for sacrificial anode system			
-	a. The metal to be protected is made anode	(2.5 +	CO2	
	b. Only the more active metal will be corroded, protecting the parent metal	2.5)	CO2	
	c. Since the anodic metal is sacrificed, the method is also called galvanic			

	cathodic protection		
	d. Usually Platinum and Silver are used as sacrificial anodes		
	(ii) In Cathodic Protection system, the structure (pipe) to be protected should become		
	as		
	a. Anode		
	b. Cathode		
	c. Electrolyte		
0.1	d. Copper Sulphate		
Q4	Corrosion cell must have these in order to complete the corrosion reaction (fill the blanks)	(1 + 2	
			GO 4
	A) and B) between and	+ 2)	CO1
	C) connecting and		
Q5	A). Uniform corrosion defined as and its preventions are		
	B). Crevice corrosion defined as and its preventions are	(2.5 + 2.5)	CO1
)	
Q6	Iron electrode is cathodically polarized in an aqueous medium and the iron potential	(2.5 + 2.5)	
	is -0.716 V vs. SCE and -0.75 V vs. SHE for the hydrogen reaction 2H ⁺ + 2e ⁻ \rightarrow H ₂ , $e_{H^+/H_2}^o = 0.00 V$ vs. SHE or $- 0.241$ V vs. SCE.		CO3
	 A). The hydrogen overpotential at pH = 3 against SCE B). The hydrogen overpotential at pH = 3 against SHE 	2.3)	
	b). The hydrogen overpotential at pri – 5 against STIL		
	SECTION B (Answer all questions)		
Q7	If the concentration of H ⁺ decreases from 0.8 to 10^{-7} M, estimate how much the		
	oxidizing power of the (MnO_4^{-}/Mn^{2+}) couple will be reduced.	10	CO3
Q8	Discuss in detail about cash flow and capital budget techniques in corrosion	10	CO5
Q9	engineering projects. a. Demonstrate cathodic and anodic protection methods.		
Q,	(OR)	10	CO2
	b. Summarize corrosion coatings	20	001
Q10	Criticize biologically influenced corrosion.	10	CO4
Q11	Discuss in detail about corrosion and explain with proper examples how the corrosion rate varies with different environments.	10	CO3
	SECTION-C		
Q12	a. Analyse the selection of proper metal or alloy for specific environment to		
<u> </u>		(7.12)	004
	prevent corrosion.	(7+13)	CO4