Name: Enrolment No:							
		ROLEUM AND ENERGY STUDIES					
Cours	End Semester Examination (Online), May 2020Course: Rocket PropulsionSemester: VIII						
Program: B.Tech (ASE) Time 03 h							
Course Code: ASEG 425 Max. Mar		rks: 100					
Instru	ctions: All questions are compulsory. Assu	me data if missing.					
	S	SECTION A					
S.	Each question in the Section A is a mu	ltiple-choice question with four answer					
No.	choices. Read each question and answer of answer. Try to answer all questions		Marks [03x10=30]	CO			
Q 1	What will happen to thrust and specific imp	ulse as the rocket is propelled to higher					
	altitudes?						
	a) Thrust decreases, specific impulse increas						
	b) Thrust increases, specific impulse increas		03	CO1			
	c) Thrust decreases, specific impulse decrea						
	d) Thrust increases, specific impulse decreas	ses					
Q 2	Consider a rocket engine A and a jet engine	B. Which of them will have higher specific					
	impulse?						
	a) A						
	b) B		03	CO2			
	c) B doesn't have a specific impulse						
	d) A doesn't have a specific impulse						
Q 3	If exhaust pressure is Pe and surrounding flucture	1					
	the optimum expansion ratio of a rocket noz	zle?					
	a) Pe=Pa						
	b) Pe <pa< td=""><td></td><td>03</td><td>CO3</td></pa<>		03	CO3			
	c) Pe>Pa						
	d) Pe=0.5*Pa						
Q 4	What kind of propulsion is used for trajector	y adjustments and attitude corrections?					
	a) Boosting propulsion		02	001			
	b) Auxiliary propulsion		03	CO1			
	c) Sustaining propulsion						

	d) Cryogenic propulsion		
Q 5	Methane is a fuel.		
	a) Cryogenic hydrocarbon		
	b) monopropellant	03	CO4
	c) bipropellant	05	004
	d) Hypergolic hydrocarbon		
Q 6	Which of the following has metal oxide pyrotechnic composition?		
	a) ZPP		
	b) Ni-Al laminate	03	CO4
	c) ZHPP	05	0.04
	d) HMTD		
Q 7	What is the nature of thrusters and feed system for attitude control rocket engines?		
	a) small; common pressurized feed system		
	b) large; separate turbopump feed system	03	CO1
	c) small; separate pressurized feed system	03	COI
	d) large; common turbopump feed system		
Q 8	A rocket engine moving at 500 m/s produces a total thrust of 9563 N, consuming		
	propellants at the rate of 4.55 kg/s. The energy content of the propellants is 5.35 MJ/kg.		
	Find the effective exhaust velocity.		
	a) 2100 m/s	03	CO2
	b) 3936 m/s	03	02
	c) 1555 m/s		
	d) 1400 m/s		
Q 9	Which of the following types of engines use Xe (Xenon) as a typical working fluid?		
	a) Resistojets		
1	b) Electro thermal	02	CO5
	c) Hall effect	03	CO5
	d) Nuclear fission		
Q 10	Evaporation of the atomized droplets can happen due to heat transferred by		
	a) Radiation from rapid combustion zone, but not by convection from moderately hot		
	gases in the first zone		
	b) Radiation from rapid combustion zone and by convection from moderately hot gases	03	CO2
	in the first zone		
	c) Convection from moderately hot gases in the first zone, but not by radiation from rapid		
	combustion zone		

	d) Neither radiation from rapid combustion zone nor by convection from moderately hot		
	gases in the first zone		
	SECTION B		
Each	question in the Section B is a Short-Answer Questions. Read each question and answ	er within	150-300
	s. Marks [05x10=50]		2000000
Q 11	Distinguish between storable and cryogenic propellants.	10	C01
Q 12	What is the importance of igniters in rocket motors?	10	CO2
Q 13	Analyze the factors influencing injector behavior in the thrust chamber of Liquid Propellant rocket engines.		
	OR Analyze the desirable propellant characteristics for the booster rocket motor with suitable propellant candidates.	10	CO4
Q 14	Write the advantages and Disadvantages of Gelled Propellants.	10	
Q 15	Illustrate the physics of Lorentz force. Briefly explain the working principle of Lorentz Accelerator with emphasis on its applications.	10	CO5
	SECTION-C		
S	Section C is a Long-Answer Question. Read the question and answer within 900 word	s [Marks	20]
Q 16	Characterize the Electric Propulsion system and briefly explain them. Analyze the challenges faced by propulsion engineers while designing these systems.		
	OR What is an Anti-satellite targeting missile? Analyze the propulsion systems used in these missions and briefly explain the Kessler syndrome proposed by Donald Kessler for LEO.	20	CO5