

	Fig. 2		
Q 12	The transfer function (T.F.) for a closed-loop control system is given as: $\text { T.F. }=\frac{1}{1+D}$ The phase angle (in degree) at $\omega=1$ will be: \qquad and the quadrant will be: \qquad -.	2	$\mathrm{CO3}$
Q 13	The Routh criterion for stability states that:	2	CO3
Q 14	For a closed loop-transfer function with forward loop transfer function G and feedback loop transfer function H , the characteristic equation is given by: \qquad	2	CO1
Q 15	'Rise time' is defined as the time	2	CO2
	SECTION B (Use not more than 40 words. Phrases can be used to answer the questions.)		
Q 16	Describe the procedure to perform the frequency response analysis of a control system. Differentiate between the various types of frequency response plots.	10	$\mathrm{CO3}$
Q 17	a) For the system shown in Fig. 3 below, find out the steady state error due to unit ramp reference input. Take $=\frac{20}{4 D+3}, G=\frac{1}{10 D+1}, \mathrm{~b}(\mathrm{t})=0$ and $\mathrm{H}=1$. Describe the steps for finding out the steady state error. Fig. 3: A closed loop system OR b) If in the closed loop system shown in Fig. 3, a feedback loop transfer function, $H=1+D$ is added, then find the steady state error due to the unit ramp disturbance input. Take $=\frac{20}{4 D+3}, G=\frac{1}{10 D+1}$ and $\mathrm{r}(\mathrm{t})=0$. Describe the steps for finding out the steady state error.	10	CO 2

Q 18	For the closed-loop control system shown below in Fig. 3, it is required to draw the polar plot using closed-loop frequency response. Find out the values of magnitude, phase angle and quadrant in Table 1 provided below Fig. 3. Fig. 3: A closed loop system In Fig. 3, take $b(t)=0, H=1$, damping ratio $\xi=\frac{1}{\sqrt{2}}$ and $G=$ a second-order system. Table 1: Table for Fig. 3 Comment on the shape of the polar plot.	10	$\mathrm{CO3}$
Q 19	Discuss the application of Nyquist relation to stability of control systems.	10	CO1
Q 20	Discuss the various types of control systems.	10	CO1
	SECTION C		
Q 21	In the system of Fig. 4, the controlled variable is h_{c}, the level in the tank. Input motion ' z ' $=0.1 h_{r}$, Port constant ' b ' of hydraulic servomotor $=400 \mathrm{~cm}^{2} / \mathrm{sec}$. Area $A=25 \mathrm{~cm}^{2}$. Area $A_{T}=1.2 \mathrm{~m}^{2}$, Inflow rate $q_{i n}=K y, K=2.0 \mathrm{~m} / \mathrm{s}^{2}$. Mass density ' ρ ' of liquid $=1000 \mathrm{~kg} / \mathrm{m}^{3}$. Fluid resistance ' R ' $=10000 \mathrm{Ns} / \mathrm{m}^{5}$.	20	CO4

Fig. 4: Figure for Q. 21
Answer the following.
(i) Write down the error equation in terms of z and h_{c}.

Fill in the missing terms:
(ii) $\quad q=() e$
(iii) $\frac{16 e}{()}=y$
(iv) $\quad q_{i n}-q_{0}=() h_{c}$
(v) $\quad q_{0}=\frac{()}{R}$
(vi) $\quad q_{i n}=() h_{c}$

If the block diagram for the system shown in Fig. 4 is represented as shown below in Fig. 5, answer the following.

Fig. 5: Block diagram for system shown in Fig. 4
(vii) $\mathrm{r}(\mathrm{t})=$
(viii) $\mathrm{G}=$
(ix) $\mathrm{c}(\mathrm{t})=$
(x) $\mathrm{H}=$

