Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination (ONLINE), May 2020

Programme Name: B.Tech. Mechanical

Course Name : Automatic Control **Course Code** : MHEG486

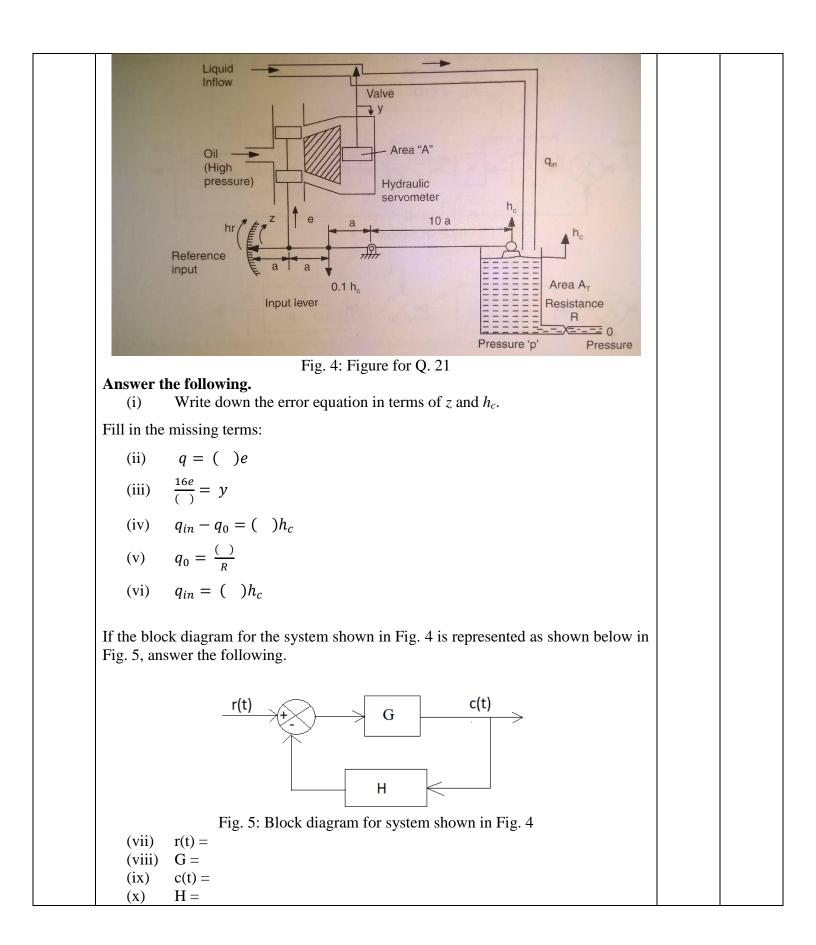
: 05

Nos. of page(s)

Instructions:

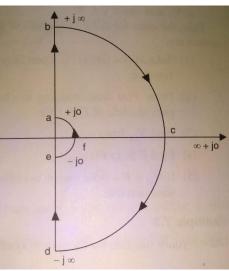
- 1. There are total 21 questions in this question paper. Internal choice is provided in Q 17 only.
- 2. Section A contains 15 questions. Each question carries 2 marks. Thus, total marks is 30. The answers to the questions are to be provided in very few words or in one word.
- 3. Section B contains 5 questions. Each question carries 10 marks. Thus, total marks is 50. There is one internal choice. The questions are to be answered in not more than 40 words.
- 4. Section C contains only 1 compulsory question. Total marks is 20.
- 5. While writing equations, make use of brackets properly.
- 6. Assume any missing data.

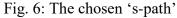
SECTION A

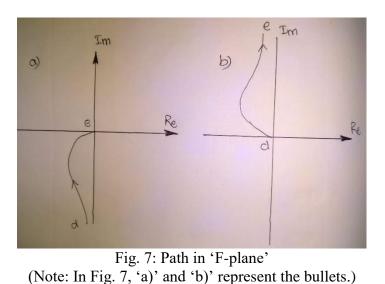

S. No.		Marks	CO
Q 1	Name the three types of controllers.	2	CO1
Q 2	Name the four different types of control action.		CO1
Q 3	Derivative control is always used along with: (a) proportional control, (b) integral control, (c) can be used independently.	2	CO1
Q 4	Proportional band is defined as:	2	CO1
Q 5	Lower the value of proportional band, higher is the	2	CO1
Q 6	Derivative time is defined as:	2	CO1
Q 7	Integral time is defined as:		CO1
Q 8	On-Off control is like proportional control with proportional band =	2	CO1
Q 9	Polar plot is the plot of and of the transfer function in polar coordinates as frequency is changed from 0 to infinity.	2	CO3
Q 10	Represent the following block diagram (Fig. 1) mathematically. X A Y $Fig. 1$	2	CO1
Q 11	Write down the mathematical relationship between the variables- r, c and e, shown in Fig. 2 below.	2	CO1

Semester : VIII Time : 03 hrs Max. Marks: 100

UPES


Q 12	$\begin{array}{c} \hline r & \hline e \\ \hline c \\ \hline Fig. 2 \\ \hline The transfer function (T.F.) for a closed-loop control system is given as: 1 \\ \end{array}$		
	$T.F. = \frac{1}{1+D}$ The phase angle (in degree) at $\omega = 1$ will be: and the quadrant will be:	2	CO3
Q 13	The Routh criterion for stability states that:	2	CO3
Q 14	For a closed loop-transfer function with forward loop transfer function G and feedback loop transfer function H, the characteristic equation is given by:	2	CO1
Q 15	'Rise time' is defined as the time	2	CO2
	SECTION B		1
	(Use not more than 40 words. Phrases can be used to answer the questions.)		
Q 16 Q 17	 Describe the procedure to perform the frequency response analysis of a control system. Differentiate between the various types of frequency response plots. a) For the system shown in Fig. 3 below, find out the steady state error due to unit 	10	CO3
	ramp reference input. Take = $\frac{20}{4D+3}$, $G = \frac{1}{10D+1}$, $b(t) = 0$ and $H = 1$. Describe the steps for finding out the steady state error. f(t) = 0 $f(t) = 0$	10	CO2


	r(t) In Fig. 3, take b(t) = 0 Frequency ratio 0 0.5 1	Fig. 3: A close , H =1, damping rati Table 1: Tab Magnitude M1 M2 M3	Phase angle (degree) An1 An2 An3	$G \xrightarrow{c(t)} \\ \downarrow \\ $	10	CO3
	2InfinityComment on the shap	M4 M5 e of the polar plot.	An4 An5	Qt4 Qt5		
Q 19	Infinity	M5 e of the polar plot.	An5	Qt5	10	C01
Q 19 Q 20	Infinity Comment on the shap	M5 e of the polar plot. n of Nyquist relation	An5 to stability of control	Qt5	10 10	C01 C01
	InfinityComment on the shapDiscuss the applicatio	M5 e of the polar plot. n of Nyquist relation pes of control systen	An5 to stability of control	Qt5		


- (xi) Characteristic equation is:
- (xii) The 'zeros' and 'poles' of the closed loop transfer function are:
- (xiii) Without using Nyquist criterion, state whether the system is stable or not? Give reasons.

If the chosen 's-path' for the purpose of Nyquist stability analysis is as shown in Fig. 6 given below, then find out the following.

- (xiv) If the phase angle in 's-plane' is denoted by 'PA' then for path '**bcd**' in Fig. 6, $F(j\omega) = () < ()$ where '<' denotes the sign of angle.
- (xv) If the phase angle in 's-plane' is denoted by 'PA' then for path 'efa' in Fig. 6, $F(j\omega) = () < ()$ where '<' denotes the sign of angle.
- (xvi) Refer to Fig. 7. It shows the F-plane path corresponding to 'de' of the chosen 's-path' of Fig. 6. Identify the correct 'F-path'.

