Name: Enrolment No: UNIVERSITY WITH A PURPOSE

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2020

Course: Renewable Energy Technology & Cogeneration Program: B. Tech PSE and B. Tech Electrical Course Code: PSEG-471 Instructions: Attempt all questions.

Semester: VIII Time: 03 hrs. Max. Marks: 100

	SECTION A (30Marks)				
S. No.	Multiple Choice	Marks	СО		
Q1	Flat plate collector absorbs				
	a. Direct radiation only b. Diffuse radiation only	2	CO1		
	c. Direct and diffuse both d. All of the above				
Q2	The major disadvantage of biogas plant is				
	a. Biogas can't be filled in the bottles		~~~		
	b. Efficiency as much as 60%.	2	CO3		
	c. Hazardous Waste product obtained from digester				
	d. Organic feed stocks used are not readily available				
Q3	Which type of fuel cell has the maximum efficiency?	2	CO1		
Q4	a. Solid Oxide b. Phosphoric Acid c. Molten Carbonate d. Alkaline OTEC energy can be tapped using the following technology				
Q4	a. Heat Pumps b. Heat Engines c. Heat Pipes d. Tidal Barrage	2	CO4		
Q5	In semidiurnal tides which statement is correct,				
V3	a. 1 high tide and 1 low tide duration of 6 hours 12.5 minutes				
	b. 1 high tide and 2 low tide duration of 12 hours 24.5 minutes	2	CO2		
	c. 2 high tides and 2 low tides duration of 6 hours 12.5 minutes	-	001		
	d. 2 high tides and 2 low tides duration of 12 hours 24.5 minutes				
Q6	The relation relates the average power generated per unit area by the tidal power				
	plant with the range of tide,	2	CO2		
	a. $0.235R$ b. $235R^2$ c. $0.225R$ d. $0.225R^2$				
Q7.	Which statement is incorrect about the solar PV system				
	a. Many cells make a module				
	b. Many modules make an array	2	CO1		
	c. Many arrays make strings				
	d. Many strings make ring main system.				
Q8	The maximum power that can be extracted from the wind energy is	2	CO1		
	a. 58.26% b. 59.26% c. 57.26% d. 59.01%				
Q9	Which among the following is the vertical axis wind turbine	2	CO3		
010	a. Diffuserb. Venturic. Three Bladedd. Farm Wind millHeat to power ratio of combined cycle cogeneration is in the range of				
Q10	a. $4.0 - 5.0$	2	CO2		
	a. $4.0 - 3.0$ b. $1.0 - 1.7$	4	002		
<u> </u>	0. 1.0 1.7				

	c. 2.0 – 10		
	d. $1.0 - 5.0$		
Q11	The observed difference between the high and low water tide is 8.5 m, for a proposed tidal site. The basin area is about 0.5 square kilometer which can generate power for 3 hours in each cycle. The average available head is assumed to be 8 m, and the overall efficiency of the generation to be 70%. Then the power in HP at any instant and the yearly power output. Average specific weight of seawater is assumed 1025 kg /m3. a. 450.43*10 ⁵ kWh/year b. 468.78*10 ⁵ kWh/year c. 439.33*10 ⁵ kWh/year d. 480.25*10 ⁵ kWh/year	5	CO2
Q12	Wind at 1 standard atmospheric pressure and 15°C has velocity of 15m/s, turbine diameter 120 m, operating speed of turbine = 40rpm and conversion efficiency of 35% then the total power density in the wind stream and total power generated are a. 2068.87 W/m ² and 8184 kW b. 2011.14 W/m ² and 8220 kW c. 2110.35 W/m ² and 8201 kW d. 2044.64 W/m ² and 8170 kW	5	CO3
	SECTION B (50Marks)		
Q13	List out electrical energy parameters required while carrying out cogeneration system performance evaluation.	10	CO3
Q14	Tabulate various biomass conversion technologies indicating the principle products obtained from the conversion.	10	CO1
Q15	Differentiate between beam and diffused radiation.	10	CO1
Q16	Explain in detail various wind resource assessment techniques.	10	CO2
Q17	List various types of fuel cells based on their conversion efficiency and applications.	10	CO4
•	SECTION-C (20Marks)	10	001
Q18	i) A process industry has decided to go for co-generation plant. Steam is available at 31.25 TPH with a pressure of 63 kg/cm2 g and 486 °C. The steam for the process is required as per the following table. Process Steam Flow, TPH Pressure, kg/cm2 g Temperature, °C Process # 1 3.25 21 310 Process # 2 8.00 8.0 174 Process # 3 20.0 5.0 160 Arrive at a co-generation scheme with single turbine. The plant requires 4.0 MW of	15	CO2, CO3, CO4
	 Affive at a co-generation scheme with single turblie. The plant requires 4.0 MW of electrical power. Find out whether the co-generation schemes are self-sufficient or any additional power needs to be purchased from the state grid, assuming the turbine efficiency of 70 % and generator efficiency of 90%. ii) Discuss in detail potential environment impacts of harnessing Tidal and OTEC energy source. 	5	04