Name:	
Enrolment No:	

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2020

Course: Aircraft Design

Program: B. Tech Aerospace Engineering

Course Code: ASEG 461

Semester: VIII

Time 03 hrs.

Max. Marks: 100

Instructions: Use of Design DATA permitted. Assume appropriate value for missing DATA

SECTION A (15x2=30 Marks)

S. No.		Marks	CO
Q1	There are(5/9) number of phases in mission profile of agricultural aircraft.	02	CO1
Q2	There is one crew for (15/30) passengers in executive class.	02	CO1
Q3	Tail arm of a Sailplane ispercent of its fuselage length (40-50/50-55/about 60/about 65).	02	CO2
Q4	Main wheels carry upto(40/50/60/70/80/90)percent of the gross takeoff weight of Aircraft.	02	CO2
Q5	A high aspect ratio wing has a(High/Low) Induced Drag.	02	CO3
Q6	A swept wing tends to stall first at the(root/tip) of the wing.	02	CO3
Q7	Medium lift Launch Vehicles can carry(0-2/ 2-20 /20-50/50+) ton payload	02	CO4
Q8	Engine weight of spacecraft is included in (payload/propellant/structure/equipment) weight category.	02	CO4
Q9	High taper ratio wing can make ailerons ineffective during flight (True /False).	02	CO1
Q10	The mission profile of Agricultural aircraft does not include cruise-back phase. (True/ False)	02	CO1
Q11	Exposed wing planform area is higher than wing reference area(True/False)	02	CO2
Q12	Landing gear drag has additional 20 percent drag as Interference drag (True /False)	02	CO3

Q13	Top stage of Launch Vehicle has bigger diameter than lower stage (true/false).	02	CO4
Q14	Thrust gimballing helps in stability of Launch vehicles(True /False).	02	CO4
Q15	Staging helps in reduction in thrust requirements of Launch Vehicles (True /False).	02	CO4
	SECTION B (5x8=40 Marks)		
Q 16	Compare performance requirements Civil and Military aircrafts.	08	CO1
Q 17	Compare Wing, Wing-tip, and Tail and landing gear configurations for subsonic and supersonic Aircrafts.	08	CO1
Q 18	What is gross take-off weight of aircraft? Give final expression for its estimation. An airplane design has following features: <i>Payload weight=26000 N; Estimated fuel fraction=0.387; Empty Weight fraction=0.837</i> . Obtain gross weight of aircraft.	08	CO2
Q 19	Consider a private four-place aircraft with following characteristics: Cruise Mach No. 0.2; Cruise Altitude=10,000 ft; wing loading-20lb/ft ² ; take-off weight=15,000 lbs. Design the main wing that would be suitable for this aircraft by estimating	08	CO2
Q 20	What parameters affect stability of space launch vehicle?		
	Or	08	CO4
	Compare different mission profiles of launch vehicles, briefly.		
	SECTION-C (1x30=30 Marks)		
Q 21	Design (layout sizing) an agricultural aircraft with following performance requirements: • stall speed 22 m/s • Loiter 30 minutes • Cruise range 300 km • cruising speed of 60 m/s • take off/landing distance 300 m Airplane should be powered by one conventional reciprocating engine	30	СОЗ