
Name: Enrolm	ent No:			
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIE End Semester/Supplementary Examination, July 2020	S		
Course:Design of Steel StructureSemesterProgram:B.Tech. Civil EngineeringTime 03 h		mester: VI me 03 hrs. ax. Marks:	nrs.	
	ctions: IS 800:2007 and IS 808:1989 should be Allowed/Provided		100	
	SECTION A			
S. No.		Ma	rks	CO
Q 1	What are the factors that govern will govern the structural design?	4	4	CO3
Q 2	Name the different modes of failure of a bolted joint?	4	4	CO1
Q 3	Classify the compression members according to the slenderness ratios.		4	CO2
Q 4	Why does buckling of web occur in beams?		4	CO3
Q 5	Sketch five various types of roof truss.		4	CO4
	SECTION B			
Q 6	Design a butt joint connect two plates 240 x 12 mm ($f_y = 250 \text{ N/mm}^2$) using or M20 bolts. Arrange the bolts to give maximum efficiency.	dinary 1	0	CO1
Q 7	An ISLC 300 @ 324.7 N/m is used to transmit a force 600 kN. The channel sec connected to agusset plate 10mm thick. Design a fillet weld if the overlap is lim 350mm. Use slot welds if required.		0	CO1
Q 8	Design a single angle discontinuous strut to carry a load of 47 kN. The length strut is 3m between intersections. The strut is connected to 12 mm thick gusse with 24mm dia HSFG bolts.		0	CO2
Q 9	The main tie of a roof truss consists of ISA 150 x 115 x 8mm and is connected gusset plate by 18 mm diameter bolts. Find out the maximum tensile load it can		0	CO2
	SECTION-C	¥ 1	1	
Q 10	Design angle section purlins for a truss roof system to support sheeting weightree N.m ² . The trusses are spaced 4 m c/c and the purlins are provided 2 m c/c. The built is situated in an area where the wind pressure is 1500 N/m^2 . Use steel with yield 260 N/mm^2 . Yield strength may be assumed as 250 MPa .	uilding ,	0	CO4
Q 11	Design a beam 11 m in clear span and subjected to a system of loads as sho figure. Yield strength may be assumed as 250 MPa.	own in 2	0	CO3

