Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, July 2020

Programme: B.Tech

Course Name: Automotive HVAC

Course Code: MEAD3009

Semester: VI

Max. Marks: 100

No. of page/s: 07

Instructions:

Read the instruction carefully before attempting.

- 1. This question paper has two section, Section A and Section B.
- 2. There are total of six questions in this question paper. One in <u>Section A</u> and five in <u>Section B</u>
- 3. Section A consist of multiple choice based questions and has the total weightage of 25%.
- 4. Section A will be conducted online on BB Collaborate platform
- 5. <u>Section B</u> consist of long answer based questions and has the total weightage of 75%. The questions for section B shall also appear in BB Collaborate
- 6. The maximum time allocated to **Section A** is one Hrs.
- 7. <u>Section B</u> to be submitted within 24 hrs from the scheduled time (*exceptional provision due extraordinary circumstance due to COVID-19 and due to internet connectivity issues in the far-flung areas*).
- 8. No submission of **Section B** shall be entertained after 24 Hrs.
- **9.** Section B should be attempted after Section A
- 10. **The section B** should be attempted in blank white sheets (hand written) with all the details like programme, semester, course name, course code, name of the student, Sapid at the top (as in the format) and signature at the bottom (right hand side bottom corner)
- 11. Both section A & B should have questions from entire syllabus.
- 12. The COs mapping, internal choices within a section is same as earlier.

SECTION B

A refrigeration system of 10.5 tones capacity at an evaporator temperature of -12 ⁰ C and condenser temperature of 27 ⁰ C is needed in a food locker. The liquid refrigerant ammonia is sub-cool by 6 ⁰ C before entering the expansion valve. The wet vapor leaves the evaporator coil. The compression is isentropic. (Note- Assume dryness fraction of ammonia vapor at the inlet of the compressor as 42+last two digits of you roll number. Example if your roll number is R160217035.The dryness fraction is 42+35=77 %.) Determine 1. Condition of vapor at outlet of Compressor. 2. Condition of vapor at entrance to the evaporator.	15	CO1
---	----	-----

	2 C	O D							
	3. C.O.P								
	4. Power required in KW. Take following properties of ammonia.								
	Take following properties of animolita.								
	C_{pv} = 2.8 KJ/kg. K, C_{pL} =4.6 KJ/Kg. K								
		Temperature (⁰ C)	Enthalpy(KJ/kg)		Entropy (KJ/Kg. K)				
			Liquid	Vapor	Liquid	Vapor	-		
		-12	126.16	1430.54	0.596	5.5055			
		27	308.63	1467.22	1.15	5.0170			
Q3	In the hot	summer, the dr	y bulb tempe	erature of air	is 45^{0} C an	d barometric	pressure is		
	756 mm (of Hg. (<u>Assume</u>	<u>suitable val</u>	ue of Wet bu	ılb tempeı	ature of air.)		
	Determine the following properties of air without using Psychrometric Chart						ırt		
	a) Pa	artial Pressure of	Water Van	or.				15	CO3
	*	elative Humidity	-						
	· ·	ew Point Tempe							
	d) S ₁	pecific Enthalpy							
		apor Density.							
Q4		room design co							
	following conditions. (Note-Assume the seating capacity of class room as 50+last								
	two digits of your roll number. Example if your roll number is R160217011.						7011.		
	Then sea	ting capacity is	50+11=61)						
	Outside C	Condition $= 35$	⁰ C DBT, 25 ⁰	C WBT. Sen	sible heat	load per stude	ent = 8		
	KW, Late	ent Heat load per	student = 1	0 KW. Total	Infiltration	air= 1000 m ²	³ /h, ADP=		
	12 ⁰ C, Qu	antity of recircu	lated air fron	n room= 60%	. If the qua	antity of recir	culated air		
	is mixed	with the condition	oned air after	the cooling of	coil. Find t	he following		15	CO4
	The condition of air leaving the conditioner coil and before mixing with the recirculated sir.								
			ir before ent	tering the roo	m				
	2. The condition of air before entering the room3. The mass of air entering the cooler								
	4. The by-pass factor of the cooling coil.								
	5. The refrigeration load on the cooling coil in TR.								

Q5	A rectangular duct made of sheet metal is used to carry 200 m ³ /min of air having		
	density of 1.2 kg/m ³ (Note- Assume the rectangular duct cross-section in cm i.e.		
	Length and Width as Length is equal to last two digits of your roll number and		
	width is half of Length. Example if your roll number is R160217050. Then	15	CO5
	Length is 50 cm and Width is 25 cm). Find the equivalent diameter of circular duct		
	if a) quantity carried is same in both the cases b) if the velocity in both cases is same.		
	Also, find the pressure loss per 100 m length of duct. Take f= 0.015 for sheet metal.		
Q6	A main circular duct consist of three branched taking equal air volume at equal		
	interval. Each interval has a friction loss of 1.2 mm of water and state pressure of 4		
	mm of water is necessary at each branch to cope up with friction loss. If the initial		
	velocity in the main duct of 1.3 m diameter is 9 m/sec. Find out the velocities and		
	diameter of the second and third length where the static pressure regain is sufficient to		
	overcome the friction loss in the succeeding length of main duct up to the next branch.		go.
	Assume static pressure regain (SPR) factor value (Note- The SPR value should be	15	CO6
	less than 1 and take SPR value as last two digits of your respective roll number.		
	Example if your roll number is R160217033. Then SPR value will be 0.33).		
	Also find out static and velocity pressures at appropriate points along the flow.		
	(Note- First draw line diagram and then solve the question).		