

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Examination, July 2020

Programme: B.Tech ASE / ASE+AVE Course Name: Applied Numerical Methods Course Code: MATH3001 No. of page/s:8 Semester : VI Max. Marks : 100 Attempt Duration : 3 Hrs.

Note:

- 1. Read the instruction carefully before attempting.
- 2. This question paper has two section, Section A and Section B.
- 3. There are total of six questions in this question paper. One in <u>Section A</u> and five in <u>Section B</u>
- 4. Section A consist of multiple choice based questions and has the total weightage of 60%.
- 5. <u>Section B</u> consist of long answer based questions and has the total weightage of 40%.
- 6. The maximum time allocated to <u>Section A</u> is 90 minutes.
- 7. <u>Section B</u> to be submitted within 24 hrs from the scheduled time i.e. if the examination starts at 10:00 AM, the long answers must be submitted by 09:59:59 AM next day. Similarly, if the examination starts at 2:00 PM it must be submitted by 01:59:59 PM next day. (*Exceptional provision due extraordinary circumstance due to COVID-19 and due to internet connectivity issues in the far-flung areas*).
- 8. No submission of <u>Section B</u> shall be entertained after 24 Hrs.
- 9. <u>Section B</u> should be attempted after <u>Section A</u>
- 10. <u>The section B</u> should be attempted in blank white sheets (hand written) with all the details like programme, semester, course name, course code, name of the student, Sapid at the top (as in the format) and signature at the bottom (right hand side bottom corner)
- 11. Both section A & B should have questions from entire syllabus.
- 12. The COs mapping, internal choices within a section is same as earlier

Answei	all the quest							
(a)	If \tilde{x} is an approximation of exact value x , then absolute error is defined as						2M CO1	
	(a)	$ x-\hat{x} $	ř					
	(b) $x - \tilde{x}$							
	(c)	$\frac{x-\tilde{x}}{x}$						
	(d)	None	of these					
(b)	An approximate value of π is given by 3.142647 and its true value							2M
	is 3.1415926. Then the relative error is given by							COI
	(a) 0.000335625							
	· · ·	0.003 0.033						
	. ,		of these					
(c)	. ,			thods are	guaranteed	convergenc	ce	2M
	methods?	(Select	t all that a	pply)				CO1
	(a)	Bisec	tion metho	od				C01
	(b) Newton-Raphson method							
	(c) Fixed point iteration method							
	(d) False position method							
(d)	Without applying any interpolation formula, the degree of the					he	2M	
	polynomial governing the following data is:						CO2	
	2	x	0	4	8	12	16	
	3	V	6	38	390	1446	3590	
								J
	(a) (b)							
	(0) (c)							
	(d)	None	of these					
(e)	The value of $\Delta^4 y(1)$ from the following table is					2M		
						CO2		
			5 10 2					
	y		~ _ ~ ~ _ 4					

Section – A (Attempt all the questions)

							1
	(b) −3						
	(c) −2						
	(d) −1						
(f)	If the function to	- 23 2.	2 1 2 4	10 :		footoriol	21/1
(f)	If the function $y =$ notation as				then the valu		2M
	notation as	$\Pi[\mathcal{X}] \mid L$		$[\lambda] \mid D,$			CO2
	(a) 3						
	(b) -10 (c) 2						
	(d) None of	of these					
(g)	Consider the follo	wing table	•				2M
	~	x	x	x	x	1	CO3
	<i>x</i>	x_0	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃		
	У	${\mathcal{Y}}_0$	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃		
	While finding $\frac{dy}{dx}$	at the tabul	lated poin	$t x_3$ using	g the first der	ivative	
	formula derived fi						
	coefficient of $\nabla^3 y$		- 8	,		- ,	
	(a) $\frac{1}{2h}$ (b) $\frac{1}{3h}$ (c) $-\frac{1}{3h}$						
<u>(1)</u>	(d) None of			-8			
(h)	Using the Trapezoidal rule, the value of $\int_2^8 y dx$ is						2M
	x	2	4	6	8		CO3
	y	3	5	6	7	-	
	(a) 18						
	(b) 25						
	(c) 16 (l) 22						
	(d) 32						
(i)	Which of the follo					roximate	2M
	value of $\int_0^2 e^{x^2} \sin 2x dx$ by dividing the interval into 10					CO3	
	subintervals? (Select all that apply)						
	(a) Trapezoidal rule						
		on's 1/3 ru	10				

UNIVERSITY OF PETROLEUM & ENERGY STUDIES

	(c) Simpson's 3/8 rule(d) All the above	
(j)	Gauss elimination technique is the combination of	2M
	(a) Forward elimination and Backward substitution(b) Backward elimination and Forward substitution(c) Both (a) and (b)(d) None of these	CO4
(k)	Which of the following is a diagonally dominant system?	2M
	(a) $3x - 4y - z = 40; x - 2y + 12z = -86; x - 6y + 2z = -32$ (b) $4x = 2y - z - 1; x + z = -4; 3x - 5y + z = 3$ (c) $27x + 6y - z = 85; 6x + 15y + 2z = 72; x + y + 54z = 110$	CO4
	(d) None of these	
(l)	While decomposing the matrix $A = \begin{bmatrix} 3 & 2 & 7 \\ 2 & 3 & 1 \\ 3 & 4 & 1 \end{bmatrix}$ as a product <i>LU</i> $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} p & q & r_1 \end{bmatrix}$	2M
		CO4
	where $L = \begin{bmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1 \end{bmatrix}$ and $U = \begin{bmatrix} p & q & r \\ 0 & s & t \\ 0 & 0 & u \end{bmatrix}$, then the values of a, b and c are	
	(a) $a = \frac{2}{3}, b = 1, c = \frac{6}{5}$ (b) $a = 1, b = \frac{2}{3}, c = \frac{6}{5}$ (c) $a = \frac{6}{5}, b = \frac{2}{3}, c = 1$ (d) None of these	
(m)	Which of the following method is a Predictor – Corrector method?	2 M
	 (a) Taylor's method (b) Euler's method (c) Modified Euler's method (d) None of these 	CO5
(n)	Given $3\frac{dy}{dx} + 5y^2 = \sin x$, $y(0.3) = 5$. Using a step size $h = 0.3$, the	2M
	value of $y(0.9)$ using Euler's method is most nearly	CO5
	(a) -35.318 (b) -36.458 (c) -600.213 (d) None of these	
(0)	The partial differential equation $(1 + x^2)u_{xx} + (5 + 2x^2)u_{xt} +$	2M
	$(4 + x^2)u_{tt} = 0$ is classified as	CO6

	 (a) Parabolic (b) Hyperbolic (c) Elliptic (d) None of these 						
(p)	The approximate value of a root of the equation $x - \sin x - 1 = 0$ using fixed point iteration technique in the interval [1 2] is (a) 1.1345 (b) 1.9345 (c) 1.6279 (d) None of these						
(q)	The approximated value of a root of $x^2 + 4 \sin x = 0$ in the interval $\begin{bmatrix} -2 & -1 \end{bmatrix}$ correct to three decimal places using Newton-Raphson method? -1.4567 (a) -2.4332 (b) -2.0177 (c) -1.9337 (d) None of these						
(r)	If y_x is a polynomial for which fifth difference is constant and $y_1 + y_7 = -7845$, $y_2 + y_6 = 686$, $y_3 + y_5 = 1088$, then the value of y_4 is (a) 476 (b) 571 (c) 662 (d) None of these						
(s)	The value of $f'(2)$ using an appropriate interpolation formula from the following data is x 0125 y 2312147(a) 2 (b) 12 (c) 15 (d) 21(a) 2 (b) 12(b) 12 (c) 15 (c) 15(c) 15 (c) 15	3M CO2					

(t)	The following boundary value problem is solved using finite difference method by taking number of subintervals $n = 2$	3M
	difference method by taking number of subintervals $n = 3$	CO6
	$x\frac{d^2y}{dx^2} + y = 0; y(1) = 1, \ y(2) = 2$	
	Then, the values of $y\left(\frac{4}{3}\right)$ and $y\left(\frac{5}{3}\right)$ are	
	(a) $y\left(\frac{4}{3}\right) = \frac{408}{487}$, $y\left(\frac{5}{3}\right) = \frac{570}{487}$ (b) $y\left(\frac{4}{3}\right) = \frac{508}{487}$, $y\left(\frac{5}{3}\right) = \frac{670}{487}$ (c) $y\left(\frac{4}{3}\right) = \frac{608}{487}$, $y\left(\frac{5}{3}\right) = \frac{770}{487}$ (d) $y\left(\frac{4}{3}\right) = \frac{708}{487}$, $y\left(\frac{5}{3}\right) = \frac{870}{487}$	
(u)	While solving the parabolic equation $u_{xx} = 2u_t$, $u(0, t) = u(4, t) =$	3M
	0 and $u(x, 0) = x(4 - x)$ with step size $h = 1$, The values of $u(1,4)$ and $u(3,5)$ obtained by Bendre-Schmidt recurrence relation are given by	CO6
	 (a) u(1,4) = 1.5 and u(3,5) = 0.75 (b) u(1,4) = 0.75 and u(3,5) = 0.5 (c) u(1,4) = 0.25 and u(3,5) = 0.95 (d) None of these 	
(v)	Given the differential equation	3M
	$2\frac{dy}{dx} = (1 + x^2)y^2$ and $y(0) = 1, y(0.1) = 1.06, y(0.2)$ = 1.12, $y(0.3) = 1.21$.	CO5
	The approximate value of $y(0.4)$ using Milne's predictor corrector method is	
	(a) 1.27 (b) 1.37	
	(c) 1.41	
	(d) None of these	
(w)	While solving the system $\begin{bmatrix} 20 & 1 & -2 \\ 3 & 20 & -1 \\ 2 & -3 & 20 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 17 \\ -18 \\ 25 \end{bmatrix}$ using Gauss-	3M
	seidel iteration with initial values $\{x^{(0)}, y^{(0)}, z^{(0)}\} = \{0, 0, 0\}$, the	CO4

	solutions obtained in the second iteration $\{x^{(2)}, y^{(2)}, z^{(2)}\}$ are approximately equal to					
	(a) $x^{(2)} = 1.0025$, $y^{(2)} = -0.9998$, $z^{(2)} = 0.9998$ (b) $x^{(2)} = -1.02$, $y^{(2)} = 0.965$, $z^{(2)} = 1.1515$ (c) $x^{(2)} = 1.02$, $y^{(2)} = 0.965$, $z^{(2)} = -1.1515$ (d) None of these					
(x)	The value of the integral $\int_{0.2}^{1.4} (\sin x - \log x + e^x) dx$ estimated by	3M				
	using Simpson's 3/8 th rule with 6 sub intervals is approximately equal to	CO3				
	 (a) 12.0621 (b) 8.9983 (c) 4.053 (d) None of these 					
(y)	From the table, the approximate value of x for which y is maximum is (Hint: Consider the terms only up to $\Delta^2 y_0$)					
	x 1.2 1.3 1.4 1.5 1.6 y 0.9320 0.9636 0.9855 0.9975 0.9996					
	(a) 0.56 (b) 1.576 (c) 2.143 (d) None of these					

Section – B (Attempt all the questions) (5 × 8 marks)

2. The function $f(x) = e^x - 3x^2$ has two of its real roots near to 1.0 and 4.0. Find these two roots by fixed point iteration scheme by discussing whether these two roots could be obtained by same fixed point scheme or not.

[CO1,8 Marks]

3. The table below gives the velocity v of a body during the time t specified. Find its acceleration at t = 1.15 using an appropriate formula.

t	1.0	1.1	1.2	1.3	1.4
ν	43.1	47.7	52.1	56.4	60.8

[CO2, 8 Marks]

4. Solve, by Crout's method, the following system of equations: x + y + z = 3, 2x - y + 3z = 16, 3x + y - z = -3.

[CO4,8 Marks]

5. Use fourth order Runge-Kutta method to solve the following simultaneous equations

$$\frac{dy}{dx} = -2y + 4e^{-x}, \quad \frac{dz}{dx} = -\frac{yz^2}{3}$$

and obtain y(0.2). Given y(0) = 2 and z(0) = 4. Take h = 0.1.
[CO5, 8 Marks]

6. Solve $\nabla^2 u = 0$ in the square region bounded by x = 0, x = 4, y = 0, y = 4 and with boundary conditions $u(0, y) = 0, u(4, y) = 8 + 2y, u(x, 0) = \frac{1}{2}x^2$ and $u(x, 4) = x^2$ taking h=k=1. (Perform 2 two iterations of Liebmann's process after obtaining the initial approximations using standard five point or diagonal five point formulae). [CO5, 8 Marks]
