UPES SAP ID No.: \qquad
14 UPES
UNIVERSITY WITH A PURPOSE

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES
 Examination, July 2020

Programme: B.Tech ASE / ASE+AVE
Course Name: Applied Numerical Methods
Course Code: MATH3001
No. of page/s: 8

Semester : VI
Max. Marks : 100
Attempt Duration : $\mathbf{3}$ Hrs.

Note:

1. Read the instruction carefully before attempting.
2. This question paper has two section, Section A and Section B.
3. There are total of six questions in this question paper. One in $\underline{\text { Section } \mathbf{A}}$ and five in Section B
4. Section A consist of multiple choice based questions and has the total weightage of 60\%.
5. Section B consist of long answer based questions and has the total weightage of 40%.
6. The maximum time allocated to Section \mathbf{A} is 90 minutes.
7. Section B to be submitted within 24 hrs from the scheduled time i.e. if the examination starts at 10:00 AM, the long answers must be submitted by 09:59:59 AM next day. Similarly, if the examination starts at 2:00 PM it must be submitted by 01:59:59 PM next day. (Exceptional provision due extraordinary circumstance due to COVID-19 and due to internet connectivity issues in the far-flung areas).
8. No submission of Section B shall be entertained after 24 Hrs.
9. Section B should be attempted after Section A
10. The section B should be attempted in blank white sheets (hand written) with all the details like programme, semester, course name, course code, name of the student, Sapid at the top (as in the format) and signature at the bottom (right hand side bottom corner)
11. Both section A \& B should have questions from entire syllabus.
12. The COs mapping, internal choices within a section is same as earlier

Section - A (Attempt all the questions)

1. Answer all the questions

	(c) Simpson's $3 / 8$ rule (d) All the above	
(j)	Gauss elimination technique is the combination of (a) Forward elimination and Backward substitution (b) Backward elimination and Forward substitution (c) Both (a) and (b) (d) None of these	$\begin{aligned} & \mathbf{2 M} \\ & \mathrm{CO} 4 \end{aligned}$
(k)	Which of the following is a diagonally dominant system? (a) $3 x-4 y-z=40 ; x-2 y+12 z=-86 ; x-6 y+$ $2 z=-32$ (b) $4 x=2 y-z-1 ; x+z=-4 ; 3 x-5 y+z=3$ (c) $27 x+6 y-z=85 ; 6 x+15 y+2 z=72 ; x+y+$ $54 z=110$ (d) None of these	$\begin{aligned} & \mathbf{2 M} \\ & \mathrm{CO} 4 \end{aligned}$
(1)	While decomposing the matrix $A=\left[\begin{array}{lll}3 & 2 & 7 \\ 2 & 3 & 1 \\ 3 & 4 & 1\end{array}\right]$ as a product $L U$ where $L=\left[\begin{array}{lll}1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1\end{array}\right]$ and $U=\left[\begin{array}{lll}p & q & r \\ 0 & s & t \\ 0 & 0 & u\end{array}\right]$, then the values of a, b and c are (a) $a=\frac{2}{3}, b=1, c=\frac{6}{5}$ (b) $a=1, b=\frac{2}{3}, c=\frac{6}{5}$ (c) $a=\frac{6}{5}, b=\frac{2}{3}, c=1$ (d) None of these	$\begin{aligned} & \mathbf{2 M} \\ & \mathrm{CO} 4 \end{aligned}$
(m)	Which of the following method is a Predictor - Corrector method? (a) Taylor's method (b) Euler's method (c) Modified Euler's method (d) None of these	$\begin{aligned} & \mathbf{2 M} \\ & \mathrm{CO} 5 \end{aligned}$
(n)	Given $3 \frac{d y}{d x}+5 y^{2}=\sin x, y(0.3)=5$. Using a step size $h=0.3$, the value of $y(0.9)$ using Euler's method is most nearly (a) -35.318 (b) -36.458 (c) -600.213 (d) None of these	$\begin{aligned} & \mathbf{2 M} \\ & \mathrm{CO} 5 \end{aligned}$
(0)	The partial differential equation $\left(1+x^{2}\right) u_{x x}+\left(5+2 x^{2}\right) u_{x t}+$ $\left(4+x^{2}\right) u_{t t}=0$ is classified as	$\begin{aligned} & \mathbf{2 M} \\ & \text { CO6 } \end{aligned}$

	(a) Parabolic (b) Hyperbolic (c) Elliptic (d) None of these	
(p)	The approximate value of a root of the equation $x-\sin x-1=0$ using fixed point iteration technique in the interval [12] is (a) 1.1345 (b) 1.9345 (c) 1.6279 (d) None of these	$\begin{aligned} & \hline \mathbf{3 M} \\ & \text { CO1 } \end{aligned}$
(q)	The approximated value of a root of $x^{2}+4 \sin x=0$ in the interval $\left[\begin{array}{ll}-2 & -1\end{array}\right]$ correct to three decimal places using Newton-Raphson method? -1.4567 (a) -2.4332 (b) -2.0177 (c) -1.9337 (d) None of these	$\begin{aligned} & \hline \mathbf{3 M} \\ & \text { CO1 } \end{aligned}$
(r)	If y_{x} is a polynomial for which fifth difference is constant and $y_{1}+$ $y_{7}=-7845, \quad y_{2}+y_{6}=686, y_{3}+y_{5}=1088$, then the value of y_{4} is (a) 476 (b) 571 (c) 662 (d) None of these	$\begin{aligned} & \mathbf{3 M} \\ & \text { CO2 } \end{aligned}$
(s)	The value of $f^{\prime}(2)$ using an appropriate interpolation formula from the following data is (a) 2 (b) 12 (c) 15 (d) 21	$\begin{aligned} & \mathbf{3 M} \\ & \mathrm{CO} 2 \end{aligned}$

(t)	The following boundary value problem is solved using finite difference method by taking number of subintervals $n=3$ $x \frac{d^{2} y}{d x^{2}}+y=0 ; \quad y(1)=1, y(2)=2$ Then, the values of $y\left(\frac{4}{3}\right)$ and $y\left(\frac{5}{3}\right)$ are (a) $y\left(\frac{4}{3}\right)=\frac{408}{487}, y\left(\frac{5}{3}\right)=\frac{570}{487}$ (b) $y\left(\frac{4}{3}\right)=\frac{508}{487}, y\left(\frac{5}{3}\right)=\frac{670}{487}$ (c) $y\left(\frac{4}{3}\right)=\frac{608}{487}, y\left(\frac{5}{3}\right)=\frac{770}{487}$ (d) $y\left(\frac{4}{3}\right)=\frac{708}{487}, y\left(\frac{5}{3}\right)=\frac{870}{487}$	$\begin{aligned} & \hline \mathbf{3 M} \\ & \text { CO6 } \end{aligned}$
(u)	While solving the parabolic equation $u_{x x}=2 u_{t}, u(0, t)=u(4, t)=$ 0 and $u(x, 0)=x(4-x)$ with step size $h=1$, The values of $u(1,4)$ and $u(3,5)$ obtained by Bendre-Schmidt recurrence relation are given by (a) $u(1,4)=1.5$ and $u(3,5)=0.75$ (b) $u(1,4)=0.75$ and $u(3,5)=0.5$ (c) $u(1,4)=0.25$ and $u(3,5)=0.95$ (d) None of these	$\begin{aligned} & \mathbf{3 M} \\ & \mathrm{CO6} \end{aligned}$
(v)	Given the differential equation $\begin{gathered} 2 \frac{d y}{d x}=\left(1+x^{2}\right) y^{2} \text { and } y(0)=1, y(0.1)=1.06, y(0.2) \\ =1.12, y(0.3)=1.21 \end{gathered}$ The approximate value of $y(0.4)$ using Milne's predictor corrector method is (a) 1.27 (b) 1.37 (c) 1.41 (d) None of these	$\begin{aligned} & \mathbf{3 M} \\ & \mathrm{CO} \end{aligned}$
(w)	While solving the system $\left[\begin{array}{ccc}20 & 1 & -2 \\ 3 & 20 & -1 \\ 2 & -3 & 20\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}17 \\ -18 \\ 25\end{array}\right]$ using Gaussseidel iteration with initial values $\left\{x^{(0)}, y^{(0)}, z^{(0)}\right\}=\{0,0,0\}$, the	3M CO4

Section - B (Attempt all the questions) (5×8 marks)

2. The function $f(x)=e^{x}-3 x^{2}$ has two of its real roots near to 1.0 and 4.0. Find these two roots by fixed point iteration scheme by discussing whether these two roots could be obtained by same fixed point scheme or not.
3. The table below gives the velocity v of a body during the time t specified. Find its acceleration at $t=1.15$ using an appropriate formula.

t	1.0	1.1	1.2	1.3	1.4
v	43.1	47.7	52.1	56.4	60.8

[CO2, 8 Marks]
4. Solve, by Crout's method, the following system of equations:
$x+y+z=3,2 x-y+3 z=16,3 x+y-z=-3$.
[CO4,8 Marks]
5. Use fourth order Runge-Kutta method to solve the following simultaneous equations

$$
\frac{d y}{d x}=-2 y+4 e^{-x}, \quad \frac{d z}{d x}=-\frac{y z^{2}}{3}
$$

and obtain $y(0.2)$. Given $y(0)=2$ and $z(0)=4$. Take $h=0.1$.
[CO5, 8 Marks]
6. Solve $\nabla^{2} u=0$ in the square region bounded by $x=0, x=4, y=0, y=4$ and with boundary conditions $u(0, y)=0, u(4, y)=8+2 y, u(x, 0)=\frac{1}{2} x^{2}$ and $u(x, 4)=x^{2}$ taking $h=k=1$. (Perform 2 two iterations of Liebmann's process after obtaining the initial approximations using standard five point or diagonal five point formulae).
[CO5, 8 Marks]

